The Indiscriminate Use of Pesticides could Increase the Prevalence of Alzheimer's Disease? A Systematic Review

Kaynara Trevisan

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil and Environmental Biotechnology and Genotoxicity Laboratory, Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil.

Renata Cristina-Pereira

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil.

Breno Régis Santos

Environmental Biotechnology and Genotoxicity Laboratory, Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil and Postgraduate Program in Environmental Sciences, Federal University of Alfenas, Alfenas, Brazil.

Paulo Eduardo Mendonça

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil and Environmental Biotechnology and Genotoxicity Laboratory, Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil.

Heberson Teixeira da Silva

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil and Environmental Biotechnology and Genotoxicity Laboratory, Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil.

Maria Tereza Gonçalves-Mendes

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil.

Tales Alexandre Aversi-Ferreira *

Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil and Environmental Biotechnology and Genotoxicity Laboratory, Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil.

*Author to whom correspondence should be addressed.


Aims: This review aims to perform an extensive literature search about the pesticides problems and to associate with AD in qualitative analysis, mainly.

Place and Duration of Study: Biomathematics Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil. Entre outubro de 2023 a abril de 2024.

Methodology: For the purpose of this systematic review, articles from 2014 onwards with the descriptors Alzheimer's disease and pesticides; neurodegenerative diseases and pesticides, were sought. Among these, articles considered most pertinent to the objective of the present review were utilized, i.e., those whose subject matter was associated with the effects of pesticides, especially glyphosate, on dementias, particularly Alzheimer’s disease (AD).

Results: After analyzed 35,590 articles, and applying exclusion criteria to journals with an impact factor equal to or lower than 4 and including topics most relevant to the objectives of this work, 35,526 articles were excluded, resulting in 64 remaining articles, of which 40 were qualitative in scope and 24 were quantitative. The articles considered most suitable for the objective of the present review were utilized, i.e., those whose topic was associated with the effects of pesticides, especially glyphosate, on dementia. The criteria for scrutinizing articles included a journal impact factor equal to or greater than 4 and the removal of duplicate articles using the freely accessible EndNote program from Web of Science. Articles and books on history and those outside the scope of the pesticide/AD relationship did not follow the criterion of having an impact factor equal to or greater than 4.

Conclusion: There appears to be a relationship between the increase in pesticide use, particularly Glyphosate, and the rise in Alzheimer's disease prevalence.

Keywords: Dementia, Alzheimer's disease, pesticides, agrochemicals

How to Cite

Trevisan, K., Cristina-Pereira, R., Santos, B. R., Mendonça, P. E., Silva, H. T. da, Gonçalves-Mendes, M. T., & Aversi-Ferreira, T. A. (2024). The Indiscriminate Use of Pesticides could Increase the Prevalence of Alzheimer’s Disease? A Systematic Review. International Neuropsychiatric Disease Journal, 21(4), 47–60.


Download data is not yet available.


Santos JP, Polinarski CA. History of pesticides and possible impacts of their use on health. Cadernos PDE Unioeste. 2012;1:1-21.

Frota MTBA, Siqueira CE. Pesticides: The hidden poisons on our table. Cad. Saúde Pública. 2021;37(2):1-5.

DOI: 10.1590/0102-311X00004321

ONU. United Nations. Department of Economic and Social Affairs. World populations prospect; 2019.


Acessado on: junho/2022.

Jobim PFC, Nunes LN, Giugliani R, Cruz IBM. Existe uma associação entre mortalidade por câncer e uso de agrotóxicos? Uma contribuição ao debate. Ciênc. Saúde Coletiva. 2010;15(1):277-288.

DOI: 10.1590/S1413-81232010000100033

Farias RF. Para gostar de ler a História da Química. 2ª ed. Editora Átomo: Campinas. 2005;1.

Wang GW, Fan X-N, Tan Y-Y, Cheng Q, Chen S-D. Parkinsonism after chronic occupational exposure to glyphosate. Parkinsonism Relat Disord. 2011;17(6): 486–487.

DOI: 10.1016/j.parkreldis.2011.02.003

Chen NN, Luo D-J, Yao X-Q, Yu C, Wang Y, Wang Q et al. Pesticides induce spatial memory deficits with synaptic impairment and an imbalanced Tau phosphorylation in rats. J Alzheimers Dis. 2012;30:585-594.

DOI: 10.3233/JAD-2012-111946

International Agency for Reaserch on Cancer (IARC) Monographs evaluation of five organophosphate insecticides and herbicides. Lyon. 2015;112:1-2.

Available:>. Acessado em: de janeiro de 2022.

Kamel F, Hoppin J. Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect. 2004;112(9):950-958.

DOI: 10.1289/ehp.7135

Solomon K, Thompson D. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. Toxicol Environ Health B Crit Rev. 2003;6(3):211-246.

DOI: 10.1080/10937400306468

Rodrigues HG, Penha-Silva N, Araujo MFP, Nishijo H, Aversi-Ferreira TA. Effects of Roundup pesticide on the stability of human erythrocyte membranes and micronuclei frequency in bone marrow cells of Swiss Mice. Bentham Open. 2011; 4(1):54-59.

DOI: 10.2174/1874196701104010054

Nascimento L, Melnyk A. The Chemistry of pesticides in the Environment and health. Revista Mangaio Acadêmico. 2016;1(1): 54-61.

Henderson AM, Gervais JA, Luukinen B, Buhl K, Stone D, Strid A et al. Glyphosate Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services; 2010. Acessado on: janeiro de 2022. Disponível em


Steinrücken HC, Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 1980;94(4):1207–1212.

DOI: 10.1016/0006-291x(80)90547-1

Busse MD, Ratcliff AW, Shestak CJ, Powers RF. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biology & Biochemistry. 2001;33(12):1777-1789.

DOI: 10.1016/S0038-0717(01)00103-1

Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem. 2017;141(6): 835–847.

DOI: 10.1111/jnc.14002

Duke S, Powles S. Glyphosate: A once-in-a-century herbicide. Pest Manag Sci. 2008; 64(4):319–25.

DOI: 10.1002/ps.1518

Rodrigues HG, Batista MTA, Fonseca LC, Aversi-Ferreira, TA. Effects of pesticides on erythrocyte osmotic fragility – A brief review. Biotemas. 2009;1(22):7-16.

DOI: 10.5007/2175-7925.2009v22n1p7

USDA. United States department of agriculture: Pesticide use in U.S. agriculture-21 selected crops, 1960-2008. Economic Information Bulletin. 2014;124 (1):1–80.

Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(3).

DOI: 10.1186/s12302-016-0070-0

Fava L, Crobe A, Orru MA, Caracciolo AB, Bottoni P, Funari E. Pesticide metabolites as contaminants of groundwater resources: assessment of the leaching potential of endosulfan sulfate, 2,6-dichlorobenzoic acid 3,4-dichloroaniline 2,4-dichlorophenol and 4-chloro-2-methylphenol. Microchem J. 2005;79(1-2): 207-211.

DOI: 10.1016/j.microc.2004.10.009

Skark C, Zullei-Seibert N, Willme U, Gatzemann U, Schlett C. Contribution of non-agricultural pesticides to pesticide load in surface water. Pest Manag Sci. 2004; 60(6):525-530.

DOI: 10.1002/ps.844

Environmental Protection Agency (EPA-US). Catchment Models and Management Tools for Diffuse Contaminants (Sediment, Phosphorus and Pesticides): Diffuse Tools Project, US. 2021;(396): 1-64.

Antoniou M, Habib MAM, Howard CV, Jennings RC, Leifert C, Nodari RO et al. Teratogenic effects of glyphosate-based herbicides: Divergence of regulatory decisions from scientific evidence. J Environ Anal Toxicol. 2012;S4(06):1-13.


Tabata H, Nagata KI. Decoding the molecular mechanisms of neuronal migration using in utero electroporation. Med Mol Morph. 2016;9(2):63–75.

DOI: 10.1007/s00795-015-0127-y

Sawada Y, Nagai Y, Ueyama M, Yamamoto I. Probable toxicity of surface-active agent in commercial herbicide containing glyphosate. Lancet. 1988;331 (8580):255-314.

DOI: 10.1016/s0140-6736(88)90379-0

Choy WN. Genetic Toxicology and Cancer Risk Assessment. 1ª ed. New York, NY: Marcel Dekker. 2001;406.

DOI: 10.1201/9780203904237

Sabarwal A, Kumara K, Singh R. Hazardous effects of chemical pesticides on human health - Cancer and other associated disorders. Environ Toxicol Pharmacol. 2018;63:103-114.

DOI: 10.1016/j.etap.2018.08.018

Faith AL, Von-Herrmann KM, Young AL, Havrda MC. Bbc3 Loss Enhances Survival and Protein Clearance in Neurons Exposed to the Organophosphate Pesticide Chlorpyrifos. Toxicol Sci. 2021; 183(2):378-392.

DOI: 10.1093/toxsci/kfab090

Saravi SSS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016;15 (145):255-264.

DOI: 10.1016/j.lfs.2015.11.006

Medehouenou TCM, Ayotte P, Carmichael PH, Kroger E, Varreault R, Lindsay J et al. Exposure to polychlorinated biphenyls and organochlorine pesticides and risk of dementia, Alzheimer’s disease and cognitive decline in an older population: a prospective analysis from the Canadian Study of Health and Aging. Environ Health. 2019;18(1):2-11.

DOI: 10.1186/s12940-019-0494-2

Tang BL. Neuropathological Mechanisms Associated with Pesticides in Alzheimer’s disease. Toxics. 2020;8(2):1-16.

DOI: 10.3390/toxics8020021

Yan D, Zhang Y, Liu L, Yan H. Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis. Nat - Sci Rep. 2016;6(32222):1-9.

DOI: 10.1038/srep32222

Li Y, Fang R, Liu Z, Jiang L, Zhang J, Li H et al. The association between toxic pesticide environmental exposure and Alzheimer’s disease: A scientometric and visualization analysis. Chemosphere. 2021;263:1-13.

DOI: 10.1016/j.chemosphere.2020.128238

Rossetti MF, Stoker C, Ramos J. Agrochemicals and Neurogenesis. Mol Cell Endocrinol. 2020;15:1-8.

DOI: 10.1016/j.mce.2020.110820

Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9(124):1-22.

DOI: 10.3389/fncel.2015.00124

Wang GW, Cai JX. Disconnection of the hippocampal - prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res. 2006;175(2):329–336.

DOI: 10.1016/j.bbr.2006.09.002

Trevisan K, Pereira RC, Silva-Amaral D, Aversi-Ferreira TA. Theories of aging and prevalence of Alzheimer’s disease. BioMed Res Int. 2019;2019:1-10.

DOI: 10.1155/2019/9171424

Verulava T, Dangadze B, Makharashvili A, Magaldadze M, Jorbenadze R, Chibukhaia G et al. Social Problems of Alzheimer Patients and Their Family Members. Home Health Care Manag Pract. 2018;30(4):175-178.

DOI: 10.1177/1084822318775703

Korolev IO. Alzheimer’s Disease: A clinical and basic science review. MSRJ. 2014;4:24–33.

DOI: 10.3402/msrj.v3i0.201333

Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. APOE Genotype and Alzheimer’s Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem Neurosci. 2021;12 (15):2749-2764.

DOI: 10.1021/acschemneuro.1c00295

Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–799.

DOI: 10.1038/nn.4017

Charchat H, Nitrini R, Caramelli P, Samechima K. Investigation of clinical markers of the early stages of Alzheimer’s disease with computerized neuropsychological tests. Psico. Reflexo. Crítico. 2001;14(2):305–316.


Martínez MA, Ares I, Rodriguéz J-L, Martínez M, Martínez-Larrañaga MR, Anadón A. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ Res. 2018;161(1):212–219.

DOI: 10.1016/j.envres.2017.10.051

Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM et al. Role of environmental pollutants in Alzheimer’s disease: a review. Environ Sci Pollut Res Int. 2020;27(36):44724-44742.

DOI: 10.1007/s11356-020-09964-x

Pearson B, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun. 2016;7:1-12.

DOI: 10.1038/ncomms11173

Steenland K, Wesseling C, Román N, Quirós I, Juncos JL. Occupational pesticide exposure and screening tests for neurodegenerative disease among an elderly population in Costa Rica. Environ Res. 2013;120:96-101.

DOI: 10.1016/j.envres.2012.08.014

Sanchez-Santed F, Colomina MT, Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417-426.

DOI: 10.1016/j.cortex.2015.10.003

Rahman MA, Rahman MS, Uddin MJ, Mamun-Or-Rashid ANM, Pang M-G, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ Sci Pollut Res Int. 2020;27(36):44659-44672.

DOI: 10.1007/s11356-020-08243-z

Schmidt, S. Fungicide Exposure and Amyloid Plaques in Mice: Further Evidence of an Environmental Risk Factor for Alzheimer’s Disease. Environ Health Perspect. 2020;128(9):094006-1–094006-2.

DOI: 10.1289/EHP7021

Lafon PA, Wang Y, Arango-Lievano M, Torrent J, Salvador-Prince L, Mansuy M et al. Fungicide Residues Exposure and b-amyloid Aggregation in a Mouse Model of Alzheimer’s Disease. Environ Health Perspect. 2020;128(1):017011-1–017011-20.

DOI: 10.1289/EHP5550

Vincenza A, Naldi M, De Simone A, Bartolini M. A patent review of Butyrylcholinesterase inhibitor and reactivators 2010-2017. Expert Opin Ther Pat. 2018;28(6):455-465.

DOI: 10.1080/13543776.2018.1476494

Colovic MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11(3):315-335.

DOI: 10.2174/1570159X11311030006

de Liyis BG, Halim W, Widyadharma IPE. Potential role of recombinant growth differentiation factor 11 in Alzheimer’s disease treatment. Egypt J Neurol Psychiatry Neurosurg. 2022;58(49).


de Liyis BG, Sutedja JC, Kesuma PMI, Liyis S, Widyadharma IPE. A review of literature on Compound 21-loaded gelatin nanoparticle: A promising nose-to brain therapy for multi-infarct dementia. Egypt J Neurol Psychiatry Neurosurg. 2023;59(13).


Bible, E. Alzheimer’s disease: High serum levels of the pesticide metabolites DDE – a potential environmental risk factor for Alzheimer disease. N R Neurol. 2014;10 (3):125.

DOI: 10.1038/nneurol.2014.25

Xiao J, Dong X, Zhang X, Ye F. Pesticides Exposure and Dopaminergic Neurodegeneration. Exp Health. 2020;13: 295-306.

DOI: 10.1007/s12403-021-00384-x

Nicolia V, Lucarelli M, Fuso A. Environment, epigenetics and neurodegeneration: Focus on nutrition in Alzheimer’s disease. Exp Gerontol. 2015; 68(2015):08-12.

DOI: 10.1016/j.exger.2014.10.006

Brasil. Congresso, Senado. Decreto n°10.282 de março de 2020, que regulamenta a Lei nº 13.979, de 6 de fevereiro de 2020. Coleção de Leis da República Federativa do Brasil, Brasília, DF;2020.

Available: htm

Acessed on: 26 de fevereiro de 2022. Disponível em

Lee DH, Lind PM, Jacobs-Jr. DR, Salihovic S, Van-Bavel B, Lind L. Association between background exposure to organochlorine pesticides and the risk of cognitive impairment: A prospective study that accounts for weight change. Environ Int. 2016;89(90):179-184.

DOI: 10.1016/j.envint.2016.02.001

Kim KS, Lee Y-M, Lee H-W, Jacobs-Jr. DR, Lee D-H. Associations between organochlorine pesticides and cognition in U.S. elders: National Health and Nutrition Examination Survey 1999–2002. Environ Int. 2015;75:87-92.

DOI: 10.1016/j.envint.2014.11.003

Li C-Q, Zheng Q, Wang Q, Zeng Q-P. Biotic/Abiotic Stress Driven Alzheimer´s disease. Front Cell Neurosci. 2016;10 (269):1-6.

DOI: 10.3389/fncel.2016.00269

Dekosky ST, Gandy S. Environmental Exposures and the Risk for Alzheimer Disease: Can We Identify the Smoking Guns? JAMA Neurol. 2014;71(3):273-275.

DOI: 10.1001/jamaneurol.2013.6031

Wainaina M, Chen Z, Zhong, C. Environmental factors in the development and progression of late-onset Alzheimer’s disease. Neurosci Bull. 2014;30(2):253-270. DOI: 10.1007/s12264-013-1425-9

Collota M, Bertazzi PA, Bollati V. Epigenetics and Pesticides. Toxicology. 2013;10(307):35-41.

DOI: 10.1016/j.tox.2013.01.017

Miranda HV, El-Agnaf AM, Outeiro TF. Glycation in Parkinson’s Disease and Alzheimer’s Disease. Mov Disord. 2016;31(6):782-790.

DOI: 10.1002/mds.26566

Yadav RS, Tiwari NK. Lipid integration in neurodegeneration: An Overview of Alzheimer’s Disease. Mol Neurobiol. 2014;50(1):168-174.

DOI: 10.1007/s12035-014-8661-5

Patel S. Disruption of aromatase homeostasis as the cause of a multiplicity of ailments: A comprehensive review. J Steroid Biochem Mol Biol. 2017;168:19-25.

DOI: 10.1016/j.jsbmb.2017.01.009

Richardson J, Roy A, Shalat SL, Von-Stein RT, Hossain MM, Buckley B et al. Elevated Serum Pesticide Levels and Risk for Alzheimer’s Disease. JAMA Neurol. 2014;71(3)284-290.

DOI: 10.1001/jamaneurol.2013.6030

Suresh S, Singh AS, Rushendran R, Vellapandian C, Prajapati B. Alzheimer’s disease: The role of extrinsic factors in its development, an investigation of the environmental enigma. Front Neurol. 2023;14:1-18.

DOI: 10.3389/fneur.2023.1303111

Voorhees J, Remy MT, Erickson CM, Dutca LM, Brat DJ, Pieper AA. Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer’s diseases. NPJ Aging Mech Dis. 2019;5(3):1-14.

DOI: 10.1038/s41514-018-0033-3

Kanthasamy A, Jin H, Anantharan V, Sondarva G, Rangasamy V, Rana A et al. Emerging Neurotoxic Mechanisms in Environmental Factors - Induced Neurodegeneration. Neurotoxicology. 2012;33(4):833–837.

DOI: 10.1016/j.neuro.2012.01.011

Franco FC, Alves AA, Godoy FR, Avelar JB, Rodrigues DD, Pedroso TMA et al. Evaluating genotoxic risks in Brazilian public health agents occupationally exposed to pesticides: a multi-biomarker approach. Environ Sci Pollut Res Int. 2016;23(19):19723-19734.

DOI: 10.1007/s11356-016-7179-y

Singh N, Gautam P. Neurodegenerative Diseases: Impact of Pesticides. J Experimental Bio Agricult Sci. 2021;9(5): 572-579.

DOI: 10.18006/2021.9(5).572.579

Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B et al. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ Sci Pollut Res Int. 2020; 27(20).

DOI: 10.1007/s11356-020-09045-z

Temeyer K, Tuckow AP, Brake DK, Li AY, León AAP. Acetylcholinesterases of blood-feeding flies and ticks. Chem Biol Interact. 2013;203(1):319-322.

DOI: 10.1016/j.cbi.2012.09.010

Soreq H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci. 2015;38(7). DOI: 10.1016/j.tins.2015.05.007

Wu D, Hu Y, Song M, Li G. Dichlorodiphenyltrichloroethane Impairs Amyloid Beta Clearance by Decreasing Liver X Receptor Alfa Expression. Front Aging Neurosci. 2021;13:1-9.

DOI: 10.3389/fnagi.2021.634948

Cervellati C, Velacchi G, Tisato V, Zuliani G, Marsillach J. Evaluating the link between Paraoxonase-1 levels and Alzheimer’s disease development. Minerva Med. 2019;110(3)238-250. DOI: 10.23736/S0026-4806.18.05875-5

Terry AV. Functional Consequences of Repeated Organophosphate Exposure: Potential Non-Cholinergic Mechanisms. Pharmacol Ther. 2012;134(3):355-365.

DOI: 10.1016/j.pharmthera.2012.03.001

Eid A, Mhatre I, Richardson J. Gene-environment interactions in Alzheimer’s Disease: A potential path to precision medicine. Pharmacol Ther. 2019;199:173-187.

DOI: 10.1016/j.pharmthera. 2019.03.005

Yadav SS, Singh MK, Yadav RS. Organophosphates induced Alzheimer’s disease: An Epigenetic Aspect. J Clin Epigen. 2016;2(1):1-10.

DOI: 10.21767/2472-1158.100010

Wingo T, Rosen A, Cutler DJ, Lah JJ, Levey AI. Paraoxonase 1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD-PD spectrum diseases. Neurobiol Aging. 2013;33(1):1-4.

DOI: 10.1016/j.neurobiolaging.2010.08. 010

Baltasar MT, Dinis-Oliveira RJ, Bastos ML, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases - A mechanistic approach. Toxicol Lett. 2014;230(2):85-103.

DOI: 10.1016/j.toxlet.2014.01.039

Venkatesan R, Park YU, Ji E, Yeo E-J, Kim SY. Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: A model for neurodegeneration in Alzheimer’s disease. Cell Death Discov. 2017;3.

DOI:10.1038/cddiscovery.2017.7. eCollection 2017

Macdonald R, Barnes K, Hastings C, Mortiboys H. Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans. 2018;46(4):891-909.

DOI: 10.1042/BST2017050

Doty RL. Olfactory dysfunction in neurodegenerative diseases: Is there a common pathological substrate? Lancet Neurol. 2017;16(6):478-488.

DOI: 10.1016/S1474-4422(17)30123-0

Medehouenou TCM, Ayotte P, Carmichael PH, Kroger E, Varreault R, Lindsay J et al. Plasma polychlorinated biphenyl and organochlorine pesticide concentrations in dementia: The Canadian Study of Health and Aging. Environ Int. 2014;69:141-147.

DOI: 10.1016/j.envint.2014.04.016

Hernandéz AF, Gozález-Alzaga B, López-Flores I, Lacasaña M. Systematic reviews on neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: Methodological features and impact on risk assessment. Environ Int. 2016;92(93):657-679.

DOI: 10.1016/j.envint.2016.01.020

Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr Med Chem. 2020;27(18):2994-3011.


Barnett JA, Bandy ML, Gibson DL. Is the Use of Glyphosate in Modern Agriculture Resulting in Increased Neuropsychiatric Conditions Through Modulation of the Gut-brain-microbiome Axis? Front. Nutr. 2022;9:1-9

Heys KA, Shore RF, Pereira MG, Martin FL. Levels of Organochlorine Pesticides Are Associated with Amyloid Aggregation in Apex Avian Brains. Environ Sci Technol. 2017;51(15):8672-8681.

DOI: 10.1021/acs.est.7b00840

Dechartres J, Jodi LP, Marie-Madeleine G, Jablaoui A, Maguin E, Rhimi M, et al. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J Neuroendocrinol. 2019;31(9):e12731

Bruggen AHCV, He MM, Shin K, Mai V, Jeong KC, et al. Environmental and Health effects of the herbicide glyphosate. Sci. Total Environ. 2018;616-617:255-268.

DOI: 10.1016/j.scitotenv.2017.10.309

Van-Assema D, Lubberink M, Bauer M, Van Der Flier WM, Schuit RC, Windhorst AD et al. Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135:181-189.

DOI: 10.1093/brain/awr298

Hamidpour R, Hamidpour M, Hamidpour S, Shahlari M. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J Tradit Complement Med. 2015;5(2):66-70.

DOI: 10.1016/j.jtcme.2014.11.008

Zaganas I, Kapetanaki S, Mastorodemos V, Kanavouras K, Colosio C et al. Linking pesticide exposure and dementia: What is the evidence? Toxicology. 2013;307:3-11.

DOI: 10.1016/j.tox.2013.02.002

Cristina-Pereira R, Trevisan K, Vasconcelos-da-Silva E, Figueredo-da-Silva S, Magri MPF, Brunelli LF, et al. Association between age gain, Parkinsonism and Pesticides: A Public Health Problem? Int. Neuropsy. Dis. J. 2023;19(3):44-73.