Study of the Relation between Aging and Pesticides: A Review

Renata Cristina-Pereira

Laboratory of Biomathematics and Physical Anthropology, Post-graduation Program of Environment Sciences, Alfenas, Minas Gerais State, Brazil.

Anna Luiza de Araújo Ribeiro

Laboratory of Biomathematics and Physical Anthropology, School of Medicine, Alfenas, Minas Gerais State, Brazil.

Anna Cláudia Ferreira Nunes

Laboratory of Biomathematics and Physical Anthropology, School of Medicine, Alfenas, Minas Gerais State, Brazil.

Luca Casale Guereschi

Laboratory of Biomathematics and Physical Anthropology, School of Medicine, Alfenas, Minas Gerais State, Brazil.

Maria Amália Garcia da Silveira Araújo

Laboratory of Biomathematics and Physical Anthropology, School of Medicine, Alfenas, Minas Gerais State, Brazil.

Maria Tereza Gonçalves-Mendes

Laboratory of Biomathematics and Physical Anthropology, Post-graduation Program of Environment Sciences, Alfenas, Minas Gerais State, Brazil and Laboratory of Biomathematics and Physical Anthropology, School of Medicine, Alfenas, Minas Gerais State, Brazil.

Kaynara Trevisan

Laboratory of Biomathematics and Physical Anthropology, Post-graduation Program of Environment Sciences, Alfenas, Minas Gerais State, Brazil.

Heberson Teixeira da Silva

Laboratory of Biomathematics and Physical Anthropology, Post-graduation Program of Environment Sciences, Alfenas, Minas Gerais State, Brazil.

Tales Alexandre Aversi-Ferreira *

Laboratory of Biomathematics and Physical Anthropology, Post-graduation Program of Environment Sciences, Alfenas, Minas Gerais State, Brazil.

*Author to whom correspondence should be addressed.


Abstract

Aims: The main aim of this study was to use specific data from the literature on ageing, correlating this with the pesticide contamination, in order to understand the relationship with an increasingly ageing population.

Study Design: A systematic review was performed.

Place and Duration of Study: Laboratory of Biomathematics of the Federal University of Alfenas, Minas Gerais State, Brazil, between April 2023 and August 2023.

Methodology: A systematic search of articles was performed using the CAPES Periodic platform, a searcher from the Education Ministry of Brazil that contains Web of Science, Scopus, MedLine, from August 2020 to May 2023. For this review, the subject’s “aging theory”; “neuroscience and pathologies to aging”; “aging and aging-associated changes”; “pesticides and pesticide toxicity”; “pesticide toxicity and neurotoxicity”; “longevity and healthy aging”; “aging human and pesticides” were searched together using the type of material “articles” in English language. Some articles about “population growth”; “world population”; “population-aging” were used for epistemological composition of this work content subjects.

Results: From the 19.720 articles after the exclusion and the inclusion criteria made with the subjects most pertinent to the objectives of this work; 19.570 articles were excluded, remaining 150 ones, of which 116 were qualitative in scope and 34 quantitative.

Conclusion: The complex relationship between the pesticide contamination and the condition of the exposed individual may be associated with premature ageing and a greater susceptibility to debilitating age-related diseases. Although technology is increasingly improved in its innovations, health and environmental regulations have not been able to rid the production processes of their potential to pollute the environment and cause health problems for those exposed to them.

Keywords: Aging theory, precocious aging, pesticide, free radicals, oxidative stress, epigenome


How to Cite

Cristina-Pereira, R., Ribeiro, A. L. de A., Nunes, A. C. F., Guereschi, L. C., Araújo, M. A. G. da S., Gonçalves-Mendes, M. T., Trevisan, K., Silva, H. T. da, & Aversi-Ferreira, T. A. (2024). Study of the Relation between Aging and Pesticides: A Review. International Neuropsychiatric Disease Journal, 21(4), 26–46. https://doi.org/10.9734/indj/2024/v21i4440

Downloads

Download data is not yet available.

References

Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA. Theories of Aging and the Prevalence of Alzheimer's Disease. Biomed Res Int. 2019;2019:9171424. Available:https://doi.org/10.1155/2019/9171424

Barbosa MC, Grosso RA, Fader CM. Hallmarks of aging: An autophagic perspective. Front Endocrinol (Lausanne). 2019;9(9):790. Available:https://doi.org/10.3389/fendo.2018.00790

Pathath AW. Theories of aging. Int J Indian Psychol. 2017;4(4):15-22. Available:https://doi.org/10.25215/0403.142

Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176-199. Available:https://doi.org/10.1016/j.cmet.2018.05.011

Lipsky MS, King M. Biological theories of aging. Dis Mon. 2015;61(11):460-66.

Available:https://doi.org/10.1016/j.disamonth.2015.09.005

Kirkwood TBL. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos Trans R Soc Lond B Biol Sci. 2015;370(1666):20140379.

Available:https://doi.org/10.1098/rstb.2014.0379

Sun L, Inaba Y, Kanzaki N, Bekal M, Chida K, Moritake T. Identification of potential biomarkers of radiation exposure in blood cells by capillary electrophoresis time-of-flight mass spectrometry. Int J Mol Sci. 2020;21(3):812. Available:https://doi.org/10.3390/ijms21030812.

Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA Damage, DNA Repair, Aging, and Neurodegeneration. Cold Spring Harb Perspect Med. 2015;5(10):a025130. Available:https://doi.org/10.1101%2Fcshperspect.a025130

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-63. Available:https://doi.org/10.1002%2Fem.22087

Lorusso JS, Svidersiy OA, Labunskyy VM. Emerging omics approaches in aging research. Antioxid Redox Signal. 2018;29(10):985-1002. Available:https://doi.org/10.1089/ars.2017.7163

Milholland B, Suh Y, Vijg J. Mutation and catastrophe in the aging genome. Exp Gerontol. 2017;94:34-40. Available:https://doi.org/10.1016/j.exger.2017.02.073

Mavritsakis N, Mirza CM, Tache S. Changes related to aging and theories of aging. Health Sport Reabilitar Med. 2020;21:252-55. Available:https://doi.org/10.26659/pm3.2020.21.4.252

Ahmed T, Nash A, Clark KE, Ghibaudo M, Leeuw NH, Potter A et al. Combining nano-physical and computational investigations to understand the nature of “aging” in dermal collagen. Int J Nanomedicine. 2017;12:3303-14. Available:https://doi.org/10.2147%2FIJN.S121400

Platt CI, Eckersley A, Ozols M, Sherrat MJ. Elastin, Aging-Related Changes in. In: Gu D, Dupre ME, editors. Encyclopedia of gerontology and population aging. 1st ed. Cham: Springer; 2020.

Available:https://doi.org/10.1007/978-3-319-69892-2_1032-1

Yin D, Brunk UT. Carbonyl toxification hypothesis of biological aging. In: Macieira-Coelho A, editor. Molecular basis of aging. 1st ed. Boca Ratón: CRC Press; 2017. Available:https://doi.org/10.1201/9780203711309-16

Simas LAW, Granzoti RO, Porsch L. Oxidative stress and its impact on aging: a literature review. Braz J Nat Sci. 2019;2(2):80-5. Portuguese. Available:https://doi.org/10.31415/bjns.v2i2.53

Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A et al. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181-7198.

Available:https://doi.org/10.18632/oncotarget.24729

Warraich UA, Hussain F, Kayani HUR. Aging-Oxidative stress, antioxidants and computational modeling. Heliyon. 2020;6(5):e04107. Available:https://doi.org/10.1016%2Fj.heliyon.2020.e04107

Nesic D, Pantic I, Mazic S. The theories of aging: Yesterday, Today, Tomorrow. Ageing and Human Rights. 2018;82-98.

Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting aging and senescence-current concepts and open lessons. Cells. 2019;8(11):1446. Available:https://doi.org/10.3390/cells8111446

Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb). 2019;29(3):030501. Available:https://doi.org/10.11613/bm.2019.030501

Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: A general overview. Cancers. 2020;12(3):558. Available:https://doi.org/10.3390/cancers12030558

Libertini G, Shubernetskaya O, Corbi G, Ferrara N. Is evidence supporting the subtelomere-telomere theory of aging?. Biochem (Mosc). 2021;86(12):1526-39.

Available:https://doi.org/10.1134/s0006297921120026

Kowald A, Kirkwood TBL. Can aging be programmed? A critical literature review. Aging Cell. 2016;15(6):986-98. Available:https://doi.org/10.1111/acel.12510

Johnson AA, Shokhirev MN, Shoshitaisgvili B. Revamping the evolutionary theories of aging. Ageing Res Rev. 2019;55:100947. Available:https://doi.org/10.1016/j.arr.2019.100947

Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood. 2018;131(5):488-95. Available:https://doi.org/10.1182/blood-2017-07-746396

Barbon FJ, Wiethölter P, Flores RA. Cellular changes in human aging. Clin Oral Invest. 2016;5(1):61-5. Portuguese. Available:https://doi.org/10.18256/2238-510X/j.oralinvestigations.v5n1p61-65

Cole JH, Marioni RE, Harris SE, Deary IJ. Brain age and other bodily 'ages': implications for neuropsychiatry. Mol Psychiatry. 2019;24(2):266-81.

Avaliable:https://doi.org/10.1038/s41380-018-0098-1

Fedarko NS. Theories and mechanisms of aging. In: Reves J, Barnett S, McSwain J, Rooke G, editors. Geriatric Anesthesiology. 3rd ed. Cham: Springer; 2018. Available:https://doi.org/10.1007/978-3-319-66878-9_2

Kochman K. New elements in modern biological theories of aging. Med Res J. 2015;3(3):89-99.

Available:https://doi.org/10.5603/FMC.2015.0002

Bülow MH, Söderqvist T. Successful ageing: a historical overview and critical analysis of a successful concept. J Aging Stud. 2014;31:139-49. Available:https://doi.org/10.1016/j.jaging.2014.08.009

Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001-24. Available:https://doi.org/10.1113%2Fjphysiol.2014.282665

World Health Organization (WHO). Hypertension; 2021. Accessed 12 December 2022. Available:https://www.who.int/news-room/fact-sheets/detail/hypertension.

Safiri S, Kolahi AA, Cross M, Hill C, Smith E, Carson-Chahhoud K et al. Prevalence, deaths, and disability-adjusted life years due to musculoskeletal disorders for 195 countries and territories 1990-2017. Arthritis Rheumatol. 2021;73(4):702-14. Available:https://doi.org/10.1002/art.41571

Rizzuto D, Melis RJF, Angleman S, Qiu C, Marengoni A. Effect of chronic diseases and multimorbidity on survival and functioning in elderly adults. J Am Geriatr Soc. 2017;65(5):1056-60.

Available:https://doi.org/10.1111/jgs.14868

Zhao C, Wong L, Zhu Q, Yang H. Prevalence and correlates of chronic diseases in an elderly population: A community-based survey in Haikou. PLoS One. 2018;13(6):e0199006.

Available:https://doi.org/10.1371/journal.pone.0199006

Henry M, Baudry S. Age-related changes in leg proprioception: Implications for postural control. J Neurophysiol. 2019; 122(2):525-38. Available:https://doi.org/10.1152/jn.00067.2019

Jahn K. The aging vestibular system: Dizziness and imbalance in the elderly. In: Lea J, Pothier D, editors. Vestibular disorders. 1st ed. Basel: Karger; 2019. Available:https://doi.org/10.1159/000490283

Osoba MY, Rao AK, Agrawal SK, Lalwani AK. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig Otolaryngol. 2019;4(1):143-53. Available:https://doi.org/10.1002/lio2.252

Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217-31. Available:https://doi.org/10.1038/nrneurol.2017.27

Macena WG, Hermano LO, Costa TC. Physiological changes resulting from aging. Rev Mosaicum. 2018;15(27):223-38. Portuguese. Available:https://doi.org/10.26893/RM.v14n27.223-236

Harada CN, Natelson LMC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737-52.

Available:https://doi.org/10.1016/j.cger.2013.07.002

Murman DL. The impact of age on cognition. Semin Hear. 2015;36(3):111-21.

Available:https://doi.org/10.1055%2Fs-0035-1555115

Ferreira D, Correia R, Nieto A, Machado A, Molina Y, Barroso J. Cognitive decline before the age of 50 can be detected with sensitive cognitive measures. Psicothema. 2015;27(3):216-22.

Available:https://doi.org/10.7334/psicothema2014.192

Sanford AM. Mild cognitive impairment. Clin Geriatr Med. 2017;33(3):325-37. Available:https://doi.org/10.1016/j.cger.2017.02.005

Akiguchi I, Pallas M, Budka H, Akiyama H. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathol. 2017;37(4):293-305.

Available:http://dx.doi.org/10.1111/neup.12373

Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017;79:66–86. Available:https://doi.org/10.1016/j.neubiorev.2017.04.030

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363.

Available:https://doi.org/10.3389/fncel.2019.00363

Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208-16. Available:https://doi.org/10.1172/jci95145

Moreno-García A, Kun A, Calero O, Medina M, Calero M. An overview of the role of lipofuscin in age-related neurodegeneration. Front Neurosci. 2018;12:464. Available:https://doi.org/10.3389/fnins.2018.00464

Morabito R, Cordaro M. Physiological or pathological molecular alterations in brain aging. Int J Mol Sci. 2022;23(15):8601. Available:https://doi.org/10.3390/ijms23158601

Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017;36(11):1474-92. Available:https://doi.org/10.15252/embj.201695810

Van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol. 2018;6(8):647-58.

Available:https://doi.org/10.1016/s2213-8587(18)30026-3

Berezovskaia E, Golovatiuc L. Morpho-physiological aspects of brain aging. In: Duca M, editor. Life sciences in the dialogue of generations: connections between universities, academia and business community. 1st ed. Republica Moldova: Tipogr. “Biotehdesign”; 2019. Accessed 13 December 2022.

Available:https://ibn.idsi.md/vizualizare_articol/89653

More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016;17(9):1447. Available:https://doi.org/10.3390%2Fijms17091447

Valenzuela PL, Morales JS, Pareja-Galeano H, Izquierdo M, Emanuele E, Villa P et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev. 2018;47:80-8.

Available:https://doi.org/10.1016/j.arr.2018.07.003

World Bank Group. Population growth (annual %). 2022. Accessed 11 April 2023.

Available:https://data.worldbank.org/indicator/SP.POP.GROW?end=2021&start=1961&view=chart

Gu D, Andreev K, Dupre ME. Major trends in population growth around the world. China CDC Wkly. 2021;3(28):604-13. Available:https://doi.org/10.46234/ccdcw2021.160.

Fehlings MG, Tetreault L, Nater A, Choma T, Harrop J, Mroz T et al. The aging of the global population: The changing epidemiology of disease and spinal disorders. Neurosurgery. 2015;77:S1-S5.

Available:https://doi.org/10.1227/NEU.0000000000000953

Flatt T, Partridge L. Horizons in the evolution of aging. BMC Biol. 2018;16(1):93.

Available:https://doi.org/10.1186/s12915-018-0562-z

Wang H, Abbas KM, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1160-203. Available:https://doi.org/10.1016/s0140-6736(20)30977-6

United Nations (UN), Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). 2019. Accessed 11 April 2023.

Available:https://www.un.org/development/desa/pd/news/world-population-prospects-2019-0

United Nations (UN), Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. 2022. Accessed 11 April 2023. Available:https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022

Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709-13. Available:https://doi.org/10.1016/j.cell.2014.10.039

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217. Available:https://doi.org/10.1016/j.cell.2013.05.039

Parrado C, Mercado-Saenz S, Perez-Davo A, Gilaberte Y, Gonzalez S, Juarranz A. Environmental Stressors on Skin Aging. Mechanistic Insights. Front Pharmacol. 2019;10:759

Available:https://doi.org/10.3389/fphar.2019.00759

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage—how and why we age?. ELife. 2021;10:e62852. Available:https://doi.org/10.7554/eLife.62852

Martin EM, Fry RC. Environmental influences on the epigenome: Exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309-33.

Available:https://doi.org/10.1146/annurev-publhealth-040617-014629

Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16(4):624-33. Available:https://doi.org/10.1111/acel.12601

Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S, editors. Plant, Soil and Microbes. 1st ed. Cham: Springer; 2016.

Available:https://doi.org/10.1007/978-3-319-27455-3_13

Özkara A, Akyıl D, Konuk M. Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S, editors. Environmental health risk- hazardous factors to living species. 1st ed. Croatia: IntechOpen; 2016. Available:http://dx.doi.org/10.5772/63094

Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health – a review. Toxicol Rep. 2021;8:1179-92.

Available:https://doi.org/10.1016/j.toxrep.2021.06.004

Olisah C, Okoh OO, Okoh AI. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon. 2020;6(3):e03518.

Available:https://doi.org/10.1016/j.heliyon.2020.e03518

Peters A, Nawrot TS, Baccarelli AA. Hallmarks of environmental insults. Cell. 2021;184(6):1455-68.

Available:https://doi.org/10.1016/j.cell.2021.01.043

Tang FHM, Lenzen M, McBratney A, Maggi F. Risk of pesticide pollution at the global scale. Nat Geosci. 2021;14:206-10. Available:https://doi.org/10.1038/s41561-021-00712-5

Combarnous Y. Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. C R Biol. 2017;340(9-10):406-09. Available:https://doi.org/10.1016/j.crvi.2017.07.009

Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A. Environmental and Health Effects of Pesticide Residues. In: Inamuddin, Ahamed MI, Lichtfouse E, editors. Sustainable Agriculture Reviews 48. 1st ed. Cham: Springer; 2020. Available:https://doi.org/10.1007/978-3-030-54719-6_8

Hashimi MH, Hashimi R, Ryan Q. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. APRJ. 2020;5(4):37-47. Available:https://doi.org/10.9734/APRJ/2020/v5i430114

Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ Toxicol Pharmacol. 2018;63:103-14.

Available:https://doi.org/10.1016/j.etap.2018.08.018

Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49. Available:https://doi.org/10.3389/fcell.2014.00049

Misra BB. The Chemical Exposome of Human Aging. Front Genet. 2020;11:574936. Available:https://doi.org/10.3389/fgene.2020.574936

Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99. Available:https://doi.org/10.1038/s41586-019-1411-0

Koureas M, Tsezou A, Tsakalof A, Orfanidou T, Hadjichristodoulou C. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. Sci Total Environ. 2014;496:358-64. Available:https://doi.org/10.1016/j.scitotenv.2014.07.062

Leite SB, Diana DMF, Abreu JAS, Avalos DS, Denis MA, Ovelar CC et al. DNA damage induced by exposure to pesticides in children of rural areas in Paraguay. Indian J Med Res. 2019;150(3):290-96.

Available:https://doi.org/10.4103/ijmr.IJMR_1497_17

Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M et al. Pesticides and Parkinson’s disease: Current and future perspective. J Chem Neuroanat. 2021;115:101966.

Available:https://doi.org/10.1016/j.jchemneu.2021.101966

Funayama M, Nishioka K, Li Y, Hattori N. Molecular genetics of Parkinson’s disease: Contributions and global trends. J Hum Genet. 2023;68:125-30 Available:https://doi.org/10.1038/s10038-022-01058-5

Dardiotis E, Siokas V, Moza S, Kosmidis MH, Vogiatzi C, Aloizou AM. Pesticide exposure and cognitive function: Results from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). Environ Res. 2019;177:108632. Available:https://doi.org/10.1016/j.envres.2019.108632

Celidoni M, Rebba V. Healthier lifestyles after retirement in Europe? Evidence from SHARE. Eur J Health Econ. 2016;18(7):805–30. Available:https://doi.org/10.1007/s10198-016-0828-8

Belkacem AN, Jamil N, Palmer JA, Ouhbi S, Chen C. Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front Neurosci. 2020;14:692 Available:https://doi.org/10.3389/fnins.2020.00692

Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging hallmarks: The benefits of physical exercise. Front Endocrinol. 2018;9:258.

Available:https://doi.org/10.3389/fendo.2018.00258

Moody HR, Sasser JR. Aging: Concepts and Controversies. 10th ed. Thousand Oaks: SAGE Publications Inc; 2020. Available:ISBN 978-1-5443-7168-9 (ebook)

Navaratnarajah A, Jackson SHD. The physiology of ageing. Medicine. 2017;45(1):6–10.

Available:https://doi.org/10.1016/j.mpmed.2016.10.008

Gladyshev VN. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging cell. 2016;15(4):594-602.

Available:https://doi.org/10.1111/acel.12480

Clement MV, Luo L. Organismal aging and oxidants beyond macromolecules damage. Proteomics. 2019;20(5-6):1800400.Available:https://doi.org/10.1002/pmic.201800400

Chandrasekaran A, Idelchik MPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol. 2017;11:91–102. Available:https://doi.org/10.1016/j.redox.2016.11.005

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. Available:http://dx.doi.org/10.2147/CIA.S158513

Scialò F, Fernández-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: Potential roles in health and disease. Front Physiol. 2017;8:428 Available:https://doi.org/10.3389/fphys.2017.00428

Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

Available:https://doi.org/10.1016/bs.ircmb.2018.05.006

Annesley SJ, Fisher PR. Mitochondria in Health and Disease. Cells. 2019;8(7):680. Available:https://doi.org/10.3390/cells8070680

Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Letters. 2017;592(5):743–58. Available:https://doi.org/10.1002/1873-3468.12902

Son JM, Lee C. Aging: All roads lead to mitochondria. Semin Cell Dev Biol. 2021;116:160–8.

Available:https://doi.org/10.1016/j.semcdb.2021.02.006

Hroudová J, Singh N, Fišar Z. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer’s Disease. BioMed Res Int. 2014;2014:175062. Available:https://doi.org/10.1155/2014/175062

Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Envir Health Rpt. 2021;8:294–308.

Available:https://doi.org/10.1007/s40572-021-00329-1

Sharma N. Free radicals, antioxidants and disease. Biol Med. 2014;6(3):1000214. Available:https://doi.org/10.4172/0974-8369.1000214

Peng C, Wang X, Chen J, Jiao R, Wang L, Li Y et al. Biology of Ageing and Role of Dietary Antioxidants. BioMed Res Int. 2014;2014:831841 Available:https://doi.org/10.1155/2014/831841

Ojha S, Javed H, Azimullah S, Haque ME. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol Cell Biochem. 2016;418(1-2):59–70.

Available:https://doi.org/10.1007/s11010-016-2733-y

Hegde AN, Duke LM, Timm LE, Nobles H. The proteasome and ageing. In: Harris JR, Korolchuk VI, editors. Biochemistry and Cell Biology of Ageing: Part III Biomedical Science. 1st ed. Cham: Springer; 2023.

Available:https://doi.org/10.1007/978-3-031-21410-3_5

Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A, Di Sanzo S et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol Syst Biol. 2020;16(6):e9596. Available:https://doi.org/10.15252/msb.20209596

Wallings RL, Humble SW, Ward ME, Wade-Martins R. Lysosomal dysfunction at the centre of parkinson’s disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci. 2019;42(12):899-912. Available:https://doi.org/10.1016/j.tins.2019.10.002

Kapetanou M, Chondrogianni N, Petrakis S, Koliakos G, Gonos ES. Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radic Biol Med. 2017;103:226–235.

Available:https://doi.org/10.1016/j.freeradbiomed.2016.12.035

Kapetanou M, Nespital T, Tain LS, Pahl A, Partridge L, Gonos ES. FoxO1 is a novel regulator of 20S proteasome subunits expression and activity. Front Cell Dev Biol. 2021;9:625715

Available:https://doi.org/10.3389/fcell.2021.625715

Sahm A, Platzer M, Koch P, Henning Y, Bens M, Groth M et al. Increased longevity due to sexual activity in mole-rats is associated with transcriptional changes in the HPA stress axis. Elife. 2021;10:e57843.

Available:https://doi.org/10.7554/eLife.57843

Augustin H, McGourty K, Allen MJ, Adcott J, Wong CT, Boucrot E et al. Impact of insulin signaling and proteasomal activity on physiological output of a neuronal circuit in aging Drosophila melanogaster. Neurobiol Aging. 2018;66:149–57. Available:https://doi.org/10.1016/j.neurobiolaging.2018.02.027

Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B et al. Proteasome activation by small molecules. Cell Chem Biol. 2017;24(6):725-36.e7

Available:https://doi.org/10.1016/j.chembiol.2017.05.010

Pearson BL, Ehninger D. Environmental Chemicals and Aging. Curr Envir Health Rpt. 2017;4(1):38–43.

Available:https://doi.org/10.1007/s40572-017-0131-6

Environmental Protection Agency (EPA). Draft human health and ecological risk assessments for glyphosate. 2016. Acessed 10 December 2022. Available:https://www.epa.gov/ingredientsused-pesticide-products/draft-human-health-and-ecological-riskassessments-glyphosate.

European Environment Agency (EEA). How pesticides impact human health and ecosystems in Europe. 2023. Acessed 14 May 2023. Available:https://doi.org/10.2800/98285

World Health Organization (WHO). Pesticide residues in food. 2022. Accessed 10 April 2023.

Available:https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food.

Rather IA, Koh WY, Paek WK, Lim J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front Pharmacol. 2017;8:830. Available:https://doi.org/10.3389/fphar.2017.00830

Donley N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health. 2019;18(1):44. Available:https://doi.org/10.1186/s12940-019-0488-0

Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. PNAS. 2015;112(18):5750-5. Available:https://doi.org/10.1073/pnas.150023211

Pereira I, Banstola B, Wang K, Donnarumma F, Vaz BG, Murray KK. Maldi imaging and laser ablation sampling for analysis of fungicide distribution in apples. Analytical Chemistry. 2019;91(9):6051-6.

Available:https://doi.org/10.1021/acs.analchem.9b00566

Iordănescu OA, Băla M, Iuga AC, Gligor D, Dascălu I, Bujancă GS et al. Antioxidant activity and discrimination of organic apples (Malus domestica borkh.) cultivated in the western region of romania: A dpph· kinetics–pca approach. Plants. 2021;10(9):1957 Available:https://doi.org/10.3390/plants10091957

Sharma A, Chetani R. A review on the effect of organic and chemical fertilizers on plants. Int J Res Appl Sci Eng Technol. 2017;5(2):677-680. Available:https://doi.org/10.22214/ijraset.2017.2103

Sharma N, Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: A review. IJAEB. 2017;10(6):675-80. Available:https://doi.org/10.5958/2230-732X.2017.00083.3

Singh NS, Sharma R, Parween T, Patanjali PK. Pesticide contamination and human health risk factor. In: Oves M, Khan MZ, Ismail IMI, editors. Modern age environmental problems and their remediation. 1st ed. Cham: Springer; 2017. Available:https://doi.org/10.1007/978-3-319-64501-8_3

Kirtana A, Seetharaman B. Comprehending the Role of Endocrine Disruptors in Inducing Epigenetic Toxicity. Endocr Metab Immune Disord Drug Targets. 2022;22(11):1059-72.

Available:https://doi.org/10.2174/1871530322666220411082656

Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. Pesticide toxicity: A mechanistic approach. EXCLI journal. 2018;17:1101-36. Available:https://doi.org/10.17179/excli2018-1710

Bala R, Singh V, Rajender S, Singh K. Environment, Lifestyle, and Female Infertility. Reprod. Sci.2020;28:617–38. Available:https://doi.org/10.1007/s43032-020-00279-3

Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol. 2020;502:110680.

Available:https://doi.org/10.1016/j.mce.2019.110680

Macedo S, Teixeira E, Gaspar TB, Boaventura P, Soares MA, Miranda-Alves L et al. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. Environ Res. 2023;218:114869. Available:https://doi.org/10.1016/j.envres.2022.114869

Bedia C, Dalmau N, Jaumot J, Tauler R. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors. Environ Res. 2015;140:18–31.

Available:https://doi.org/10.1016/j.envres.2015.03.014

Kumar V, Yadav CS, Banerjee BD. Xeno-estrogenic pesticides and the risk of related human cancers. J Xenobiot. 2022;12(4):344-55. Available:https://doi.org/10.3390/jox12040024

Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol. 2020;508:110789.

Available:https://doi.org/10.1016/j.mce.2020.110789

Aydemir D, Ulusu NN. The possible role of the endocrine disrupting chemicals on the premature and early menopause associated with the altered oxidative stress metabolism. Front Endocrinol. 2023;14:1081704. Available:https://doi.org/10.3389/fendo.2023.1081704

Grindler NM, Allsworth JE, Macones GA, Kannan K, Roehl KA, Cooper AR. Persistent organic pollutants and early menopause in U.S. Women. Plos One. 2015;10(1):e0116057.

Available:https://doi.org/10.1371/journal.pone.0116057

Tang BL. Neuropathological Mechanisms Associated with Pesticides in Alzheimer’s Disease. Toxics. 2020;8(2):21. Available:https://doi.org/10.3390/toxics8020021

Modgil S, Lahiri DK, Sharma VL, Anand A. Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener. 2014;3(1):9.

Available:https://doi.org/10.1186/2047-9158-3-9

Moyer RA, McGarry KG, Babin MC, Platoff GE, Jett DA, Yeung DT. Kinetic analysis of oxime-assisted reactivation of human, Guinea pig, and rat acetylcholinesterase inhibited by the organophosphorus pesticide metabolite phorate oxon (PHO). Pestic Biochem Physiol. 2018;145:93–9.

Available:https://doi.org/10.1016/j.pestbp.2018.01.009

Raslan AA, Elbadry S, Darwish WS. Estimation and Human Health Risk Assessment of Organochlorine Pesticides in Raw Milk Marketed in Zagazig City, Egypt. J Toxicol. 2018;2018:3821797.

Available:https://doi.org/10.1155/2018/3821797

Helou K, Harmouche-Karaki M, Karake S, Narbonne JF. A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: Environmental and human contaminants. Chemosphere. 2019;231:357-68. Available:https://doi.org/10.1016/j.chemosphere.2019.05.109

aya CS, Malgwi AM, Degri MM, Samaila AE. Impact of synthetic pesticides utilization on humans and the environment: an overview. J Agric Sci Technol. 2019;11(4):279-86. Available:https://doi.org/10.15547/ast.2019.04.047

Cristina-Pereira R, Trevisan K, Vsdconcelos-da-Silva E, Figueredo-da-Silva S, Magri MP, Brunelli L, Aversi-Ferreira. Association between age gain, Parkinsonism and pesricides: a public health problem?. International Neuropsychiatric Disease 2023; 19(3):44-73. Available:

https://doi.org/10.9734/indj/2023/v19i3376

Pirsaheb M, Limoee M, Namdari F, Khamutian R. Organochlorine pesticides residue in breast milk: a systematic review. Med J Islam Repub Iran. 2015;29:228. Available:PMC4606957

Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord. 2020;21:127–47. Available:https://doi.org/10.1007/s11154-019-09521-z

Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology. 2019;160(6):1421–35 Available:https://doi.org/10.1210/en.2019-00034

Karwal P, Mittal P, Nagar G, Singh A, Singh IK. Effects of pesticides on human physiology, genetics, and evolution. In: Sarma H, Dominguez DC, Lee WY, editors. Emerging Contaminants in the Environment. 1st ed. Amsterdam: Elsevier; 2022 Available:https://doi.org/10.1016/B978-0-323-85160-2.00005-6

Paul KC, Sinsheimer JS, Rhodes SL, Cockburn M, Bronstein J, Ritz B. Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene–Pesticide Interactions in a Case–Control Study of Parkinson’s Disease, California (USA). Environ Health Perspect. 2016;124(5):570–7.

Available:https://doi.org/10.1289/ehp.1408976

Passos JDC, Felisbino K, Laureano HA, Guiloski IC. Occupational exposure to pesticides and its association with telomere length - A systematic review and meta-analysis. Sci Total Environ. 2022;849:157715 Available:https://doi.org/10.1016/j.scitotenv.2022.157715

Leveque X, Hochane M, Geraldo F, Dumont S, Gratas C, Oliver L et al. Low-dose pesticide mixture induces accelerated mesenchymal stem cells aging in vitro. Stem Cells. 2019;37:1083-94. Available:https://doi.org/10.1002/stem. 3014