Review of Experimental Models of Schizophrenia
International Neuropsychiatric Disease Journal, Volume 19, Issue 1,
Page 1-19
DOI:
10.9734/indj/2023/v19i1362
Abstract
Schizophrenia is a severe psychiatric disease that has a lifetime prevalence of 1% in most of the populations studied. The neuropathology and psychopathology of Schizophrenia are still poorly understood. This is attributed to the paucity of adequate animal models. Schizophrenia is a disorder of the human brain. Consequently, the potency of animal models in Schizophrenia research is limited to certain aspects of the disease. One of the most difficult aspects of modelling Schizophrenia in animals has been the lack of a clear and explicit conceptual framework for this disorder. This review discussed drug-induced animal models of Schizophrenia such as Ketamine (NMDA receptor antagonist), Phencyclidine (NMDA receptor antagonist) etc. It also discussed genetic animal models of Schizophrenia which include but not limited to Schizophrenia susceptibility Genes, Neuregulin-1(NRG1), DAT gene, Zinc finger DHH-type3 containing 8 (ZDHHC8) and Dysbindin. It went further to discuss fetal models Schizophrenia, postweaning social isolation and ended with In-Vitro animal models. The use of animal models to improve understanding of the neurochemical and structural CNS changes that precipitate development of Schizophrenia, rather than a focus on treating the symptoms, is a prerequisite to enable new more effective therapeutic strategies to be developed. Because of the complexity and ambiguity of gene-gene and gene-environment interactions in the aetiology of schizophrenia, the challenge of developing more reliable predictive animal models of this disorder, most likely through multiple early-life interventions, is still ongoing.
- Schizophrenia
- psychopathology
- In-vitro animal models
- gene-environment interactions
- postweaning social isolation
- dysbindin
How to Cite
References
Mouri A, Noda Y, Enomoto T, Nabeshima T. Phencyclidine animal models of Schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int. 2007;51(2-4):173-84. DOI: 10.1016/j.neuint.2007.06.019, PMID 17669558.
Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G. Ketamine-induced changes in rat behaviour: A possible animal model of Schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(4):687-700. DOI: 10.1016/S0278-5846(03)00080-0, PMID 12787858.
Hany M, Rehman B, Chapman J. Schizophrenia [online]; 2019. Nih.gov. Available:https://www.ncbi.nlm.nih.gov/books/NBK539864/
Müller N, Myint AM, Schwarz MJ. Kynurenine pathway in Schizophrenia: Pathophysiological and therapeutic aspects. Curr Pharm Des. 2011;17(2): 130-6. DOI: 10.2174/138161211795049552, PMID 21361867.
Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Effectiveness of antipsychotic drugs in patients with chronic Schizophrenia. N Engl J Med. 2005;353(12):1209-23. DOI: 10.1056/NEJMoa051688, PMID 16172203.
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, et al. An overview of animal models related to Schizophrenia. Can J Psychiatry. 2019;64(1):5-17. DOI: 10.1177/0706743718773728, PMID 29742910.
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. Pharm Ther. 2014;39(9):638-45. PMID 25210417.
Ram E, Raphaeli S, Avital A. Prepubertal chronic stress and ketamine administration to rats as a neurodevelopmental model of Schizophrenia symptomatology. Int J Neuropsychopharmacol. 2013;Aug 6(10):2307-14. DOI: 10.1017/S1461145713000813, PMID 23915719.
Roberts RE, Curran HV, Friston KJ, Morgan CJ. Abnormalities in white matter microstructure associated with ChronicKetamine use. Neuropsychopharmacology; 2013.
Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994; 51(3):199-214. DOI:10.1001/archpsyc.1994.03950030035004, PMID 8122957.
Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B. Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of Schizophrenia. Brain Struct Funct. 2012;217(2):395-409. DOI: 10.1007/s00429-011-0351-8, PMID 21979451.
Driesen NR, McCarthy G, Bhagwagar Z, Bloch MH, Calhoun VD, D’Souza DC, et al. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology. 2013;Jul 16(13):2613-22. DOI: 10.1038/npp.2013.170, PMID 23856634.
Sabbagh JJ, Murtishaw AS, Bolton MM, Heaney CF, Langhardt M, Kinney JW. Chronic ketamine produces altered distribution of parvalbumin-positive cells in the hippocampus of adult rats. Neurosci Lett. 2013;69-74. DOI: 10.1016/j.neulet.2013.06.040, Pii: S0304-3940(13)00587-9.
PMID 23827228.
Thwaites SJ, van den Buuse M, Gogos A. Differential effects of estrogen and testosterone on auditory sensory gating in rats. Psychopharmacol (Berl). 2014;(1):243-56. DOI: 10.1007/s00213-013-3231-5, PMID 23929132.
Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, et al. Pharmacological characterisation of a structurally novel α2C –Adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models. Basic Clin Pharmacol Toxicol May. 2013;30.
Boulay D, Ho-Van S, Bergis O, Avenet P, Griebel G. Phencyclidine decreases tickling-induced 50-kHz ultrasound vocalizations in juvenile rats: a putative model of the negative symptoms of Schizophrenia? Behav Pharmacol. 2013;(7):543-51. DOI: 10.1097/FBP.0b013e3283654044, PMID 23928693.
Moreno JL, González-Maeso J. Preclinical models of antipsychotic drug action. Int J Neuropsychopharmacol Jun. 2013;10: 1-14.
Ma M, Ren Q, Fujita Y, Ishima T, Zhang JC, Hashimoto K. Effects of AS2586114, a soluble epoxide hydrolase inhibitor, on hyperlocomotion and prepulse inhibition deficits in mice after administration of phencyclidine. Pharmacol Biochem Behav Jun. 2013;20(110C):98-103.
Kameda SR, Fukushiro DF, Wuo-Silva R, Trombin TF, Procópio-Souza R, Brandão LC et al. Opposite effects of neonatal hypoxia on acute amphetamine-induced hyperlocomotion in adult and adolescent mice. Psychiatry Res Jun. 2013;208(1):74-7. DOI: 10.1016/j.psychres.2013.03.021, PMID 23618352.
Bay-Richter C, O’Callaghan MJ, Mathur N, O’Tuathaigh CM, Heery DM, Fone KC, et al. D-amphetamine and antipsychotic drug effects on latent inhibition in mice lacking dopamine D2 receptors. Neuropsychopharmacology. 2013;38(8):1512-20. DOI: 10.1038/npp.2013.50, PMID 23422792.
Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V, Low MJ, Geyer MA. Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J Neurosci. 2002;22(21):9604-11. DOI: 10.1523/JNEUROSCI.22-21-09604.2002, PMID 12417685.
Narendran R, Himes M, Mason NS. Reproducibility of post-amphetamine [11C] FLB 457 binding to cortical D2/3 receptors. PLOS ONE. 2013;8(9):e76905. DOI: 10.1371/journal.pone.0076905, PMID 24098812.
Suresh P, Raju AB. Antidopaminergic effects of leucine and genistein on shizophrenic rat models. Neurosciences, Riyadh. 2013;18(3):235-41. PMID 23887213.
Manning EE, van den Buuse. MBDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci. 2013;7:92.
Chung et al. Chung S, Verheij MM, Hesseling P, van Vugt RW, Buell M, Belluzzi JD, et al. The melanin-concentrating hormone (MCH) system modulates ehavioura associated with psychiatric disorders. PLOS ONE. 2011a;6(7):e19286. DOI: 10.1371/journal.pone.0019286, PMID 21818251.
Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, et al. Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav Oct. 2012;102(4):507-14. DOI: 10.1016/j.pbb.2012.06.013, PMID 22735830.
Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487-517. DOI: 10.1146/annurev.neuro.24.1.487, PMID 11283319.
Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51(2):159-212. PMID 10353985.
Hooley JM, Delgado ML. Pain insensitivity in the relatives of Schizophrenia patients. Schizophr Res. 2001;47(2-3):265-73. DOI: 10.1016/s0920-9964(00)00064-5, PMID 11278144.
Messamore E, Hoffman WF, Janowsky A. The niacin skin flush abnormality in Schizophrenia: A quantitative dose–response study. Schizophr Res. 2003;62(3):251-8. DOI: 10.1016/s0920-9964(02)00311-0, PMID 12837522.
Newson P, Lynch-Frame A, Roach R, Bennett S, Carr V, Chahl LA. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance toSchizophrenia. Br J Pharmacol Oct. 2005;146(3):408-18. DOI: 10.1038/sj.bjp.0706349, PMID 16041396.
Liu X, Hong SI, Park SJ, Dela Peña JB, Che H, Yoon SY, et al. The ameliorating effects of 5,7-dihydroxy-6-methoxy-2(4-phenoxyphenyl)-4H-chromene-4-one, an oroxylin A derivative, against memory impairment and sensorimotor gating deficit in mice. Arch Pharm Res Jul. 2013;36(7):854-63. doi: 10.1007/s12272-013-0106-6,
PMID 23543630.
Singer P, Yee BK. Reversal of scopolamine-induced disruption of prepulse inhibition by clozapine in mice. Pharmacol Biochem Behav Mar. 2012;101(1):107-14. DOI: 10.1016/j.pbb.2011.12.010, PMID 22210488.
Barak S. Modeling cholinergic aspects of Schizophrenia, Focus on the antimuscarinic syndrome. Behav Brain Res. 2009;204(2):335-51. DOI: 10.1016/j.bbr.2009.04.006, PMID 19376161.
Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: Relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 2004;18(12):1410-2. DOI: 10.1096/fj.04-1575fje, PMID 15231726.
Lim AL, Taylor DA, Malone DT. Consequences of early life MK-801 administration: long-term behavioural effects and relevance to Schizophrenia research. Behav Brain Res Feb 1;227(1):276-86. 2012;227(1):276-86. DOI: 10.1016/j.bbr.2011.10.052, PMID 22085878.
Rezvani AH, Kholdebarin E, Cauley MM, Levin ED. Attenuation of pharmacologically induced ehaviour impairment by methylphenidate in rats. Pharmacol Biochem Behav. 2009b;92:141-6.
López-Gil X, Artigas F, Adell A. Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des. 2010;16(5):502-15. doi: 10.2174/138161210790361416, PMID 19909228.
Ewing SG, Grace AA. Evidence for impaired sound intensity processing during prepulse inhibition of the startle response in a rodent developmental disruption model of Schizophrenia. J Psychiatr Res. 2013;(11):1630-5. DOI: 10.1016/j.jpsychires.2013.07.012, PMID 23932574.
Maćkowiak M, Bator E, Latusz J, Mordalska P, Wędzony K. Prenatal MAM administration affects histone H3 methylation in postnatal life in the rat medial prefrontal cortex. Eur Neuropsychopharmacol. 2014;(2):271-89. DOI: 10.1016/j.euroneuro.2013.05.013, Pii: S0924-977X(13)00175-2. PMID 23932495.
Swerdlow NR, Powell SB, Breier MR, Hines SR, Light GA. Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats. Neuropharmacology. Jun 26;75C:38-46. 2013;75:38-46. DOI: 10.1016/j.neuropharm.2013.06.003, PMID 23810830.
Macêdo DS, Araújo DP, Sampaio LRL, 2012. Macêdo DS, Araújo DP, Sampaio LR, Vasconcelos SM, Sales PM, Sousa FC et al. Animal models of prenatal immune challenge and their contribution to the study of Schizophrenia: a systematic review. Braz J Med Biol Res. 2012;45(3):179-86. doi: 10.1590/s0100-879x2012007500031, PMID 22392187.
Sargin D, Hassouna I, Sperling S, Sirén AL, Ehrenreich H. Uncoupling of neurodegeneration and gliosis in a murine model of juvenile cortical lesion. Glia. 2009;57(7):693-702. DOI: 10.1002/glia.20797, PMID 18985736.
Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. May 11;381(9878):1654-62. 2013;381(9878):1654-62. DOI: 10.1016/S0140-6736(13)60855-7, PMID 23663951.
Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and Schizophrenia. Nat Rev Neurosci Jun. 2008;9(6):437-52. DOI: 10.1038/nrn2392, PMID 18478032.
Kato T, Kasai A, Mizuno M, Fengyi L, Shintani N, Maeda S, et al. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLOS ONE. Dec 9;5(12):e14185. 2010;5(12):e14185. DOI: 10.1371/journal.pone.0014185, PMID 21151609.
Hida H, Mouri A, Noda Y. Behavioral phenotypes in schizophrenic animal models with multiple combinations of genetic and environmental factors. J Pharmacol Sci. 2013;121(3):185-91. DOI: 10.1254/jphs.12r15cp, PMID 23449491.
Ghiani CA, Dell’Angelica EC. Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro. 2011;2(2):3. DOI: 10.1042/AN20110010, Pii: e00058. PMID 21504412.
Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK et al. The possible role of the Akt ehavioura pathway in Schizophrenia. Brain Res Aug 27;1470:145-58. 2012;1470:145-58. DOI: 10.1016/j.brainres.2012.06.032, PMID 22771711.
Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB ehavioura and neuroprotection in Schizophrenia. Asian J Psychiatr Feb. 2013;6(1):22-8. DOI: 10.1016/j.ajp.2012.08.010, PMID 23380313.
Martinotti G, Di Iorio G, Marini S, Ricci V, De Berardis D, Di Giannantonio M. Nerve growth factor and brain-derived neurotrophic factor concentrations in Schizophrenia: a review. J Biol Regul Homeost Agents. 2012;26(3):347-56. PMID 23034254.
Lakatosova S, Ostatnikova D. Reelin and its complex involvement in brain development and function. Int J Biochem Cell Biol. 2012;44(9):1501-4. DOI: 10.1016/j.biocel.2012.06.002, PMID 22705982.
Ramsey AJ. NR1 knockdown mice as a representative model of the glutamate hypothesis of Schizophrenia. Prog Brain Res. 2009;179:51-8. DOI: 10.1016/S0079-6123(09)17906-2, PMID 20302817.
Clelland CL, Read LL, Baraldi AN, Bart CP, Pappas CA, Panek LJ, et al. Evidence for association of hyperprolinemia with Schizophrenia and a measure of clinical outcome. Schizophr Res Sep. 2011;131(1-3):139-45. DOI: 10.1016/j.schres.2011.05.006, PMID 21645996.
Kempf L, Nicodemus KK, Kolachana B, Vakkalanka R, Verchinski BA, Egan MF, et al. Functional polymorphisms in PRODH are associated with risk and protection for Schizophrenia and fronto-striatal structure and function. PLOS Genet. 2008; 4(11)(11):e1000252. DOI: 10.1371/journal.pgen.1000252, PMID 18989458.
De la Salle S, Smith D, Choueiry J, Impey D, Philippe T, Dort H, et al. Effects of COMT genotype on sensory gating and its modulation by nicotine: differences in low and high P50 suppressors. Neuroscience. Jun 25;241:147-56. 2013;241: 147-56. DOI: 10.1016/j.neuroscience.2013.03.029, PMID 23535252.
Sacchetti E, Scassellati C, Minelli A, Valsecchi P, Bonvicini C, Pasqualetti P, et al. Schizophrenia susceptibility and NMDA-receptor mediated signalling: an association study involving 32 tagSNPs of DAO, DAOA, PPP3CC, and DTNBP1 genes. BMC Med Genet Mar 9;14:33. 2013;14:33. DOI: 10.1186/1471-2350-14-33, PMID 23497497.
Mössner R, Schuhmacher A, Wagner M, Quednow BB, Frommann I, Kühn KU et al. DAOA/G72 predicts the progression of prodromal syndromes to first episode psychosis. Eur Arch Psychiatry Clin Neurosci. 2010;260(3):209-15. DOI: 10.1007/s00406-009-0044-y, PMID 19763662.
Thimm M, Krug A, Kellermann T, Markov V, Krach S, Jansen A, et al. The effects of a DTNBP1 gene variant on attention networks: an fMRI study. Behav Brain Funct Sep 16;6:54. 2010;6:54. DOI: 10.1186/1744-9081-6-54, PMID 20846375.
Fallgatter AJ, Herrmann MJ, Hohoff C, Ehlis AC, Jarczok TA, Freitag CM, et al. DTNBP1 (ehaviour) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology. Sep. 2006;31(9):2002-10. DOI: 10.1038/sj.npp.1301003, PMID 16407900.
Lazar NL, Neufeld RW, Cain DP. Contribution of nonprimate animal models in understanding the etiology of Schizophrenia. J Psychiatry Neurosci. 2011;36(4):E5-29. DOI: 10.1503/jpn.100054, PMID 21247514.
Hsu R, Woodroffe A, Lai WS, Cook MN, Mukai J, Dunning JP, et al. Nogo Receptor 1 (RTN4R) as a candidate gene for Schizophrenia: Analysis using human and mouse genetic approaches. PLOS ONE. 2007;2(11)(11):e1234. DOI: 10.1371/journal.pone.0001234, PMID 18043741.
Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating enzymes. Neuron. Dec 16;44(6):987-96. 2004;44(6):987-96. DOI: 10.1016/j.neuron.2004.12.005, PMID 15603741.
Shin HD, Park BL, Bae JS, Park TJ, Chun JY, Park CS, et al. Association of ZDHHC8 polymorphisms with smooth pursuit eye movement abnormality. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(6): 1167-72.
Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: An endophenotype of neuropsychiatric disorders. Neural Plast. 2013;2013:318596. DOI: 10.1155/2013/318596, PMID 23840971.
Brose N. For better or for worse: ehavioural regulate SNARE function and vesicle fusion.Traffic. 2008.;9(9):1403-13.
Drew CJ, Kyd RJ, Morton AJ. Complexin 1 knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal. Hum Mol Genet. Oct 1;16(19):2288-305. 2007;16(19):2288-305. DOI: 10.1093/hmg/ddm181, PMID 17652102.
Furrer J, Enthart A, Kühlewein A, Dehner A, Klein C, Hansen S, et al. Backbone 1H, 13C and 15N resonance assignments for the 25.8 kDa DNA binding domain of the human p63 protein. J Biomol NMR. 2003;26(4):377-8. DOI: 10.1023/a:1024044805720, PMID 12815266.
Flores C, Bhardwaj SK, Labelle-Dumais C, Srivastava LK. Altered netrin-1 receptor expression in dopamine terminal regions following neonatal ventral hippocampal lesions in the rat. Synapse. Jan. 2009;63(1):54-60. DOI: 10.1002/syn.20584, PMID 18932228.
Proenca CC, Gao KP, Shmelkov SV, Rafii S, Lee FS. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci Mar. 2011;34(3):143-53. DOI: 10.1016/j.tins.2011.01.001, PMID 21315458.
Distler MG, Palmer AA. Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in ehaviour: Recent advances and mechanistic insights. Front Genet. 2012;19(3)(v):250.
Arai M, Yuzawa H, Nohara I, Ohnishi T, Obata N, Iwayama Y, et al. Enhanced carbonyl stress in a subpopulation of Schizophrenia. Arch Gen Psychiatry. 2010;67(6):589-97. DOI: 10.1001/archgenpsychiatry.2010.62, PMID 20530008.
Chen R, Daining CP, Sun H, Fraser R, Stokes SL, Leitges M, et al. Protein kinase Cβ is a modulator of the dopamine D2 autoreceptor-activated trafficking of the dopamine transporter. J Neurochem Jun. 2013;125(5):663-72. DOI: 10.1111/jnc.12229, PMID 23458603.
Grant P, Kuepper Y, Mueller EA, Wielpuetz C, Mason O, Hennig J. Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)-a suitable endophenotype of Schizophrenia. Front Hum Neurosci Jan 24. 2013;7:1. DOI: 10.3389/fnhum.2013.00001, PMID 23355817.
Cai J, Fang L, Huang Y, Li R, Yuan J, Yang Y, et al. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013;(17):5402-15. DOI: 10.1158/0008-5472.CAN-13-0297, PMID 23856247.
Steinlechner S, Stahlberg J, Völkel B, Djarmati A, Hagenah J, Hiller A, et al. Co-occurrence of affective and Schizophrenia spectrum disorders with PINK1 mutations. J Neurol Neurosurg Psychiatry. May. 2007;78(5):532-5. DOI: 10.1136/jnnp.2006.105676, PMID 17202228.
Woo J, Kwon SK, Nam J, Choi S, Takahashi H, Krueger D, et al. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J Cell Biol. 2013;201(6):929-44. DOI: 10.1083/jcb.201209132, PMID 23751499.
Soler-Llavina GJ, Fuccillo MV, Ko J, Südhof TC, Malenka RC. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc Natl Acad Sci U S A Oct 4;108(40):16502-9. 2011; 108(40):16502-9. DOI: 10.1073/pnas.1114028108, PMID 21953696.
Bourgeron T, Leboyer M, Delorme R. [Autism: more evidence of a genetic cause]. Bull Acad Natl Med Feb. 2009;193(2):299-304; discussion 304-5. PMID 19718887.
Walters JT, Rujescu D, Franke B, Giegling I, Vásquez AA, Hargreaves A, et al. The role of the major histocompatibility complex region in cognition and brain structure: A schizophrenia GWAS follow-up. Am J Psychiatry. Aug 1;170(8):877-85. 2013; 170(8):877-85. DOI: 10.1176/appi.ajp.2013.12020226, PMID 23903335.
Zhang A, Yu H, He Y, Shen Y, Pan N, Liu J et al. The spatio-temporal expression of MHC class I molecules during human hippocampal formation development. Brain Res. 2013;26-38. DOI: 10.1016/j.brainres.2013.07.001, PMID 23838325.
Zhang GF, Wang N, Shi JY, Xu SX, Li XM, Ji MH, et al. Inhibition of the l-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test. Pharmacol Biochem Behav May. 2013;24(110C): 8-12.
Wolf C, Mohr H, Schneider-Axmann T, Reif A, Wobrock T, Scherk H, et al. CACNA1C genotype explains interindividual differences in ehaviou volume among patients with Schizophrenia. Eur Arch Psychiatry Clin Neurosci; 2013.
Krug A, Witt SH, Backes H, Dietsche B, Nieratschker V, Shah NJ, et al. A genome-wide supported variant in CACNA1C influences hippocampal activation during episodic memory encoding and retrieval. Eur Arch Psychiatry Clin Neurosci. 2014;(2):103-10. DOI: 10.1007/s00406-013-0428-x, PMID 23860750.
Grube S, Gerchen MF, Adamcio B, Pardo LA, Martin S, Malzahn D, et al. A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in Schizophrenia. EMBO Mol Med Jun. 2011;3(6):309-19. DOI: 10.1002/emmm.201100135, PMID 21433290.
Stöber G, Jatzke S, Meyer J, Okladnova O, Knapp M, Beckmann H, et al. Short CAG repeats within the hSKCa3 gene associated with Schizophrenia: results of a family-based study. Neuroreport. 1998; 9(16)(16):3595-9. DOI: 10.1097/00001756-199811160-00010, PMID 9858366.
Glatt SJ, Faraone SV, Tsuang MT. CAG-repeat length in exon 1 of KCNN3 does not influence risk for Schizophrenia or bipolar disorder: A meta-analysis of association studies. Am J Med Genet B Neuropsychiatr Genet. 2003;121B(1):14-20. DOI: 10.1002/ajmg.b.20048, PMID 12898569.
Gutman F, Alberini JL, Wartski M, Vilain D, Le Stanc E, Sarandi F, et al. Incidental colonic focal lesions detected by FDG PET/CT. AJR Am J Roentgenol Aug. 2005;185(2):495-500. DOI: 10.2214/ajr.185.2.01850495, PMID 16037527.
Atalar F, Acuner TT, Cine N, Oncu F, Yesilbursa D, Ozbek U, et al. Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to Schizophrenia: A case control study. Behav Brain Funct May. 2010;28(6: 27). DOI: 10.1186/1744-9081-6-27
Brown AS, Derkits EJ. Prenatal infection and Schizophrenia: A review of epidemiologic and translational studies. Am J Psychiatry. Mar. 2010;167(3):261-80. DOI: 10.1176/appi.ajp.2009.09030361, PMID 20123911.
Garbett KA, Hsiao EY, Kálmán S, Patterson PH, Mirnics K. Effects of maternal immune activation on gene expression patterns in the fetal brain. Transl Psychiatry. 2012;2(4):e98. DOI: 10.1038/tp.2012.24, PMID 22832908.
McGrath J. Hypothesis: is low prenatal vitamin D a risk-modifying factor for Schizophrenia? Schizophr Res Dec 21;40(3):173-7. 1999;40(3):173-7. DOI: 10.1016/s0920-9964(99)00052-3, PMID 10638855.
Kesby JP, Cui X, O’Loan J, McGrath JJ, Burne TH, Eyles DW. Developmental vitamin D deficiency alters dopamine-mediated ehavioura and dopamine transporter function in adult female rats. Psychopharmacol (Berl). 2010;208(1):159-68. DOI: 10.1007/s00213-009-1717-y, PMID 19921153.
Andrew MA, Hebert MF, Vicini P. Physiologically based pharmacokinetic model of midazolam disposition during pregnancy. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5454-7. DOI: 10.1109/IEMBS.2008.4650448, PMID 19163951.
Yoon J, Choi Y, Cho S, Lee D. Low trihalomethane formation in Korean drinking water. Sci Total Environ Jan. 2003;20(302):157-66(1-3).
Burd I, Breen K, Friedman A, Chai J, Elovitz MA. Magnesium ehaviou reduces inflammation-associated brain injury in fetal mice. Am J Obstet Gynecol. 2010;202(3):292.e1-9. DOI: 10.1016/j.ajog.2010.01.022, PMID 20207246.
Dieni S, Rees S. BDNF and TrkB protein expression is altered in the fetal hippocampus but not cerebellum after chronic prenatal compromise. Exp Neurol Apr. 2005;192(2):265-73. DOI: 10.1016/j.expneurol.2004.06.003, PMID 15755544.
Zornberg GL, Buka SL, Tsuang MT. The problem of obstetrical complications and Schizophrenia. Schizophr Bull. 2000;26(2):249-56. DOI:10.1093/oxfordjournals.schbul.a033449, PMID 10885627.
Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of Schizophrenia. Schizophr Bull May. 2009;35(3):631-7. DOI: 10.1093/schbul/sbn121, PMID 18832344.
Patterson A. Germs and Jim Crow: the impact of microbiology on public health policies in progressive era American South. J Hist Biol Fall. 2009;42(3):529-59. DOI: 10.1007/s10739-008-9164-x, PMID 20027786.
Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23(1):297-302. DOI: 10.1523/JNEUROSCI.23-01-00297.2003, PMID 12514227.
Wolff AR, Bilkey DK. Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behav Brain Res Jun. 2008;190(1):156-9. DOI: 10.1016/j.bbr.2008.02.021, PMID 18367260.
Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J. Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology. Aug. 2007;32(8):1791-804. DOI: 10.1038/sj.npp.1301292, PMID 17180123.
Cannon TD, Yolken R, Buka S, Torrey EF. Collaborative Study Group on the Decreased neurotrophic response to birth hypoxia in the etiology of Schizophrenia. Perinatal origins of severe psychiatric disorders. Biol Psychiatry. 2008;64(9)(v) 1:797-802.
Powell SB, Geyer MA. Developmental markers of psychiatric disorders as identified by sensorimotor gating. Neurotox ResAug-Sep. 2002;4(5-6):489-502. DOI: 10.1080/10298420290030578, PMID 12754162.
Hall FS. Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol. 1998;12(1-2):129-62. DOI: 10.1615/critrevneurobiol.v12.i1-2.50, PMID 9444483.
Christensen JH, Elfving B, Müller HK, Fryland T, Nyegaard M, Corydon TJ, et al. The Schizophrenia and bipolar disorder associated BRD1 gene is regulated upon chronic restraint stress. Eur Neuropsychopharmacol Sep. 2012;22(9): 651-6. DOI: 10.1016/j.euroneuro.2012.01.005, PMID 22341945.
Bjarkam CR, Corydon TJ, Olsen IM, Pallesen J, Nyegaard M, Fryland T, et al. Further immunohistochemical characterization of BRD1 a new susceptibility gene for Schizophrenia and bipolar affective disorder. Brain Struct Funct Dec. 2009;214(1): 37-47. DOI: 10.1007/s00429-009-0219-3, PMID 19763615.
Kushima I, Aleksic B, Ikeda M, Yamanouchi Y, Kinoshita Y, Ito Y, et al. Association study of bromodomain-containing 1 gene with Schizophrenia in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(3): 786-91. DOI: 10.1002/ajmg.b.31048, PMID 19908236.
Kaffman A, Krystal JH. New frontiers in animal research of psychiatric illness. Methods Mol Biol. 2012;829:3-30. DOI: 10.1007/978-1-61779-458-2_1, PMID 22231804.
-
Abstract View: 63 times
PDF Download: 19 times