Deep Brain Stimulation-Emerging Indications and Newer Techniques: A Current Perspective

Fayrouz Moidu

James Parkinson’s Movement Disorder Research Centre, Kannur Medical College, Kerala, India.

Sujith Ovallath *

James Parkinson’s Movement Disorder Research Centre, Kannur Medical College, Kerala, India and BMH Gimcare Hospital and Aster Group, Kerala, India.

*Author to whom correspondence should be addressed.


Deep brain stimulation (DBS) is in clinical use for more than three decades and its indications are ever expanding. Conventionally DBS is used in the treatment of Parkinson’s disease (PD), tremor and dystonia, and has been approved by FDA. It has been tried in several other indications with encouraging results. Recently a DBS device has been approved for use in intractable epilepsy. DBS is giving promising results for use in obesity, trigeminal vascular cephalalgias, and Tourette syndrome and post stroke rehabilitation. Many psychiatric conditions like depression, obsessive compulsive disorder, anorexia nervosa and substance abuse can be controlled with DBS when conventional medical treatment fails to relieve the symptoms. Newer techniques in DBS like directional leads, variable frequency stimulation, newer target identifications, Newer MRI compatible devices, remote programming, newer DBS recording electrodes that can be used in finding out the pathophysiology of disease is also discussed.

Keywords: Deep brain stimulation, dystonia, tremor, tourette

How to Cite

Moidu, Fayrouz, and Sujith Ovallath. 2022. “Deep Brain Stimulation-Emerging Indications and Newer Techniques: A Current Perspective”. International Neuropsychiatric Disease Journal 18 (3):53-64.


Download data is not yet available.


Benabid, Alim L, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret JE, De Rougemont J, Gao DM. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. The Lancet. 1991;337: 403-406.

Grill WM. Safety considerations for deep brain stimulation: Review and analysis. Expert Rev Med Devices. 2005;2:409–420.

Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. App Neurophysiol. 1987;50:344–346.

Sobstyl M, Zabek M. Deep brain stimulation of the ventral intermediate thalamic nucleus in the treatment of essential tremor. Neurologia i Neurochirurgia Polska. 2007;41(2):160-8.

Nazzaro JM, Lyons KE, Pahwa R. Deep brain stimulation for essential tremor. In Handbook of Clinical Neurology. 2013; 116:155-166.

Lake W, Hedera P, Konrad P. Deep Brain Stimulation for Treatment of Tremor. Neurosurgery Clinics. 2019;30(2):147-59.

Ushe M, Mink JW, Revilla FJ, Wernle A, Schneider Gibson P, McGee‐Minnich L, Hong M, Rich KM, Lyons KE, Pahwa R, Perlmutter JS. Effect of stimulation frequency on tremor suppression in essential tremor. Movement Disorders: Official Journal of the Movement Disorder Society. 2004;19(10):1163-8.

Barbe MT, Liebhart L, Runge M, Deyng J, Florin E, Wojtecki L, Schnitzler A, Allert N, Sturm V, Fink GR, Maarouf M. Deep brain stimulation of the ventral intermediate nucleus in patients with essential tremor: stimulation below intercommissural line is more efficient but equally effective as stimulation above. Experimental Neurology. 2011;230(1):131-7.

Xie, Tao, Bernard, Jacqueline, Warnke, Peter. Post subthalamic area deep brain stimulation for tremors: a mini-review. Translational Neurodegeneration. 2012;1: 20.

Ostrem JL, Racine CA, Glass GA, et al. Sub thalamic nucleus deep brain stimulation in primary cervical dystonia. Neurology. 2011;76:870–878.

Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM. Pallidal stimulation in cervical dystonia: Clinical implications of acute changes in stimulation parameters. European Journal of Neurology. 2009;16(4):506-12.

Alterman RL, Tagliati M. Deep brain stimulation for torsion dystonia in children. Childs Nerv Syst. 2009;23:1033–1040.

Isaias IU, Alterman RL, Tagliati M. Outcome predictors of pallidal stimulation in patients with primary dystonia: The role of disease duration. Brain. 2008;131:1895–1902.

Eltahawy HA, Saint-Cyr J, Giladi N, Lang AE, Lozano AM. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54:613–619;discussion 619–621.

Kleiner-Fisman G, Liang GS, Moberg PJ, et al. Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: impact on severity, neuropsychological status, and quality of life. J Neurosurg. 2007;107:29–36.

Kupsch A, Benecke R, Mu¨ller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–1990.

Mink JW, Walkup J, Frey KA, et al. Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord. 2006;21:1831-1838.

Poysky J, Jimenez-Shahed J. Reply: Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord. 2007;22:1366-1367.

Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.

Salanova V, Witt T, Worth R, et al. Long- term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–1025.

Wang, Xin, Mao, Zhiqi, Cui, Zhiqiang, Xu, Xin, Pan, Longsheng, Liang, Shuli, Ling, Zhipei, and Yu, Xinguang. Predictive factors for long-term clinical outcomes of deep brain stimulation in the treatment of primary Meige syndrome. Journal of Neurosurgery. 2019;1:1-9.

Quaade F, Vaernet K, Larsson S. Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochirurgica. 1974;30:111–7.

Kennedy GC. The hypothalamic control of food intake in rats. Proc R Soc Lond B Biol Sci. 1950;137:535–49.

Harat, Marek, Ruda+¢, Marcin, Zieliäski, Piotr, Birska, Julita, and Sokal, Paweé. Nucleus accumbens stimulation in pathological obesity. Neurologia i Neurochirurgia Polska. 2016;50:207-210.

Leone, Massimo. Deep brain stimulation in headache. The Lancet Neurology. 2006;5:873-877.

Lockhart IA, Mitchell SA, Kelly S. Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: systematic review of the ’real-world’ evidence. Dement Geriatr Cogn Disord. 2009;28:389–403.

Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:502–10.

Oh YS, Kim HJ, Lee KJ, Kim YI, Lim SC, Shon YM. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure. 2012;21:183.

Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, KerenR, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010; 68:521–34.

Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54:777–87.

Machado AG, Baker KB, Schuster D, Butler RS, Rezai A. Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats. Brain Res. 2009;1280: 107–16.

Machado AG, Cooperrider J, Furmaga HT, Baker KB, Park HJ, Chen Z, et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery. 2013;73:344–53.

Baker KB, Schuster D, Cooperrider J, Machado AG. Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp Neurol. 2010;226:259–64

Nuttin, Bart, Gybels, Jan, Cosyns, Paul, Gabrils, Lutgardis, Meyerson, Bjorn, Andreewitch, Sergej, Rasmussen, Steven A, Greenberg, Benjamin, Friehs, Gerhard, Rezai, Ali R. Deep brain stimulation for psychiatric disorders. Neurosurgery Clinics of North America. 2003;14:S162-S162.

Bewernick, Bettina H, Hurlemann, Ren+, Matusch, Andreas, Kayser, Sarah, Grubert, Christiane, Hadrysiewicz, Barbara, Axmacher, Nikolai, Lemke, Matthias, Cooper-Mahkorn, Deirdre, and Cohen, Michael X. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment- resistant depression. Biological Psychiatry. 2010;67:110-116.

Malone Jr, Donald A, Dougherty, Darin D, Rezai, Ali R, Carpenter, Linda L, Friehs, Gerhard M, Eskandar, Emad N, Rauch, Scott L, Rasmussen, Steven A, Machado, Andre G, and Kubu, Cynthia S. Deep brain stimulation of the ventral capsule/ ventral striatum for treatment-resistant depression. Biological Psychiatry. 2009;65:267-275.

Lozano, Andres M, Mayberg, Helen S, Giacobbe, Peter, Hamani, Clement, Craddock, R. Cameron, Kennedy, Sydney H. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biological Psychiatry. 2008;64: 461-467.

Blomstedt, Patric, Sjberg, Rickard L, Hansson, Maja, Bodlund, Owe, Hariz, Marwan I. Deep brain stimulation in the treatment of obsessive-compulsive disorder. World Neurosurgery. 2013;80: e245-e253.

Makris, Nikolaos, Rathi, Yogesh, Mouradian, Palig, Bonmassar, Giorgio, Papadimitriou, George, Ing, Wingkwai I, Yeterian, Edward H, Kubicki Marek, Eskandar, Emad N, and Wald, Lawrence L. Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): Precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging and Behavior. 2016;10:1054-1067.

Sankar, Tejas, Chakravarty, M. Mallar, Bescos, Agustin, Lara, Monica, Obuchi, Toshiki, Laxton, Adrian W, McAndrews, Mary Pat, Tang-Wai, David F, Workman, Clifford I, Smith, Gwenn S. Deep brain stimulation influences brain structure in Alzheimer's disease. Brain Stimulation. 2015;8:645-654.

Kravitz, Alexxai V, Tomasi, Dardo, LeBlanc, Kimberly H, Baler, Ruben, Volkow, Nora D, Bonci, Antonello, and Fer, Sergi. Cortico-striatal circuits: novel therapeutic targets for substance use disorders. Brain Research. 2015;1628: 186-198.

Lipsman, Nir, Woodside, D. Blake, Giacobbe, Peter, Hamani, Clement, Carter, Jacqueline C, Norwood, Sarah Jane, Sutandar, Kalam, Staab, Randy, Elias, Gavin, and Lyman, Christopher H. Subcallosalcingulate deep brain stimulation for treatment-refractory anorexia nervosa: A phase 1 pilot trial. The Lancet. 2013;381:1361-1370.

Lipsman, Nir, Lam, Eileen, Volpini, Matthew, Sutandar, Kalam, Twose, Richelle, Giacobbe, Peter, Sodums, Devin J, Smith, Gwenn S, Woodside, D. Blake, and Lozano, Andres M. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. The Lancet Psychiatry. 2017;4:285-294.

Shen L, Jiang C, Hubbard CS, Ren J, He C, Wang D, et al. Subthalamic nucleus deep brain stimulation modulates 2 distinct neurocircuits. Ann Neurol. 2020;88:1178– 93.

Jia F, Hu W, Zhang J, Wagle Shukla A, Almeida L, Meng FG, et al. Variable frequency stimulation of subthalamic nucleus in Parkinson’s disease: rationale and hypothesis. Parkinsonism Relat Disord. 2017;39:27–30.

Chen Y, Hao H, Chen H, Tian Y, Li L. The study on a real-time remote monitoring system for Parkinson’s disease patients IEEE Eng Med Biol Soc. 2014;2014: 1358–61.

Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, et al. Automatic sleep stage classification based on subthalamic local field potentials. IEEE Trans Neural Syst Rehabil Eng. 2019;27:118– 28.

Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130: 1596–607.

Jenkinson N, Nandi D, Muthusamy K, Ray NJ, Gregory R, Stein JF, et al. Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord. 2009;24:319–28.

Wang H, Gao H, Jiao T, Luo Z. A meta- analysis of the pedunculopontine nucleus deep-brain stimulation effects on Parkinson’s disease. Neuroreport. 2016; 27:1336-44.

Xie T, Vigil J, MacCracken E, Gasparaitis A, Young J, Kang W, Bernard J, Warnke P, Kang UJ. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology. 2015;84(4): 415-20.

Cosentino C, Baccini M, Putzolu M, Ristori D, Avanzino L, Pelosin E. Effectiveness of physiotherapy on freezing of gait in parkinson's disease: a systematic review and meta‐analyses. Movement Disorders. 2020;35(4):523- 36.

Lee A, Hellmers N, Vo M, Wang F, Popa P, Barkan S, Patel D, Campbell C, Henchcliffe C, Sarva H. Can google glass™ technology improve freezing of gait in parkinsonism? A pilot study. Disability and Rehabilitation: Assistive Technology. 2020;1-1.

Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, Cogiamanian F, Prenassi M, Bocci T, Cortese F, Rampini P. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018; 90(11):e971-6.

Qasim SE, de Hemptinne C, Swann NC, Miocinovic S, Ostrem JL, Starr PA. Electrocorticography reveals beta desynchronization in the basal ganglia- cortical loop during rest tremor in Parkinson's disease. Neurobiology of Disease. 2016;86:177-86.

Hilliard JD, Frysinger RC, Elias WJ. Effective subthalamic nucleus deep brain stimulation sites may differ for tremor, bradykinesia and gait disturbances in Parkinson’s disease. Stereotactic and Functional Neurosurgery. 2011;89(6):357-64.