Auditory Evoked Potentials P50: Pure-tones vs Clicks. There is a Similar Supression?

Main Article Content

PhD M.D, Seidel Guerra López
M.D, María de Los A. Pedroso Rodríguez
M.D, Diego Cantero
Gilvan Aguiar da Silva


Objective: Clinical application of middle-latency auditory evoked potential (MLAEPs) has been increasing, highlighting the importance of understanding the nature of P50, a component of middle-latency auditory evoked potential. We manipulated stimulus frequency bands in auditory stimuli in order to investigate the nature of P50 in human auditory evoked potentials.

Methods: Two paradigms have been used to obtain P50: one is a conditioning /testing paradigm in which paired of pure tone (1000Hz) are delivered, and the other was presented paired of clicks, both with an intensity of 60 dB sound pressure level above the auditory threshold. A total of 30 healthy volunteers were recruited for this study among Center of genetic engineering (fifteen man and fifteen women, mean age of 36, 5). All without consumption of caffeine, cigarettes and drugs.

Results: No statistically significant differences occurred between the P50 amplitudes and latencies for the pure tone and those for the clicks.

Conclusions: Our present results indicate that P50 in humans may reflect a feed-forward mechanism of the brain where a preceding stimulus drives sensory gating mechanisms in preparation for a second stimulus, but the contained frequency doesn't influence on the P50. Both types (tones or clicks) can be used in the exploration of patient with this evoked potential.

P50, evoked potential, MLAEPs, tones, clicks

Article Details

How to Cite
López, P. M. S. G., Rodríguez, M. M. de L. A. P., Cantero, M. D., & Silva, G. A. da. (2020). Auditory Evoked Potentials P50: Pure-tones vs Clicks. There is a Similar Supression?. International Neuropsychiatric Disease Journal, 14(1), 32-39.
Original Research Article


Supp GG, Higgen FL, Hipp JF, Engel AK, Siegel M. Mid-latency auditory evoked potentials differentially predict sedation and drug level under opioid and hypnotic Agents. Front Pharmacol. 2018;9:1-10.
DOI: 10.3389/fphar.2018.01427

Palm S, Linstedt U, Petry A, Wulf H. Dose-response relationship of propofol on mid-latency auditory evoked potentials (MLAEP) in cardiac surgery. Acta Anaesthesiol Scand. 2001;45(8):1006-1010.
DOI: 10.1034/j.1399-6576.2001.450814.x

Skoyles J, Pepperman M. IVOX. Br J Anaesth. 1993;70(6):603-604.
DOI: 10.1093/bja/70.6.603

Bray PA, Mamiya N, Fann AV, Gellman H, Skinner RD, Garcia-Rill EE. Modulation of the sleep state–dependent P50 midlatency auditory-evoked potential by electric stimulation of acupuncture points. Arch Phys Med Rehabil. 2018;86(10):2018-2026.
DOI: 10.1016/j.apmr.2004.11.047

Johannesen JK, Kieffaber PD, O’Donnell BF, Shekhar A, Evans JD, Hetrick WP. Contributions of subtype and spectral frequency analyses to the study of P50 ERP amplitude and suppression in schizophrenia. Schizophr Res. 2005;78(2-3):269-284.
DOI: 10.1016/j.schres.2005.05.022

Geisler CD, Frishkopf LS, Rosenblith WA. Extracranial responses to acoustic clicks in Man. Science (80-). 1958;128(3333): 1210-1211.
DOI: 10.1126/science.128.3333.1210

McGee TJ, Özdamar Ö, Kraus N. Auditory middle latency responses in the guinea pig. Am J Otolaryngol. 1983;4(2):116-122.
DOI: 10.1016/S0196-0709(83)80013-1

Lee YS, Lueders H, Dinner DS, Lesser RP, Hahn J, Klem G. Recording of auditory evoked potentials in man using chronic subdural electrodes. Brain. 1984;107(1): 115-131.
DOI: 10.1093/brain/107.1.115

Edmonds HL, Gordon EK, Levy WJ. Chapter: 12 - Central Nervous System Monitoring. In: Klein A, Vuylsteke A, Nashef SAM, eds. Kaplan’s Essentials of Cardiac Anesthesia. Second Edi. Cambridge: Elsevier. 2018:277-298.
DOI: 10.1016/B978-0-323-49798-5.00012-7

Griffith JM, O’Neill JE, Petty F, Garver D, Young D, Freedman R. Nicotinic receptor desensitization and sensory gating deficits in schizophrenia. Biol Psychiatry. 1998;44 (2):98-106.
DOI: 10.1016/S0006-3223(97)00362-4

Chen CH, Ninomiya H, Onitsuka T. Influence of reference electrodes, stimulation characteristics and task paradigms on auditory P50. Psychiatry Clin Neurosci. 1997;51(3):139-143.
DOI: 10.1111/j.1440-1819.1997.tb02376.x

Ninomiya H, Sato E, Onitsuka T, Hayashida T, Tashiro N. Auditory P50 obtained with a repetitive stimulus paradigm shows suppression to high-intensity tones. Psychiatry Clin Neurosci. 2000;54(4):493-497.
DOI: 10.1046/j.1440-1819.2000.00741.x

Ripley DL, Pacheco K, Sherer M. Brain injury medicine: Principles and practice. Demos Medical Publishing. 2007;22.

Jansen BH, Hu L, Boutros NN. Auditory evoked potential variability in healthy and schizophrenia subjects. Clin Neurophysiol. 2010;121(8):1233-1239.
DOI: 10.1016/j.clinph.2010.03.006

Aleksandrov AA, Dmitrieva ES, Stankevich LN, Knyazeva VM, Shestakova AN. The development of muscle fatigue suppresses auditory sensory gating (P50) during sustained contraction. Front Syst Neurosci. 2016;10(MAY):1-6.
DOI: 10.3389/fnsys.2016.00044

Wang Y, Feng Y, Jia Y, et al. Auditory M50 and M100 sensory gating deficits in bipolar disorder: A MEG study. J Affect Disord. 2014;152-154(1):131-138.
DOI: 10.1016/j.jad.2013.08.010

Ambrosini A, De Pasqua V, Áfra J, Sandor PS, Schoenen J. Reduced gating of middle-latency auditory evoked potentials (P50) in migraine patients: Another indication of abnormal sensory processing? Neurosci Lett. 2001;306(1-2): 132-134.
DOI: 10.1016/S0304-3940(01)01871-7

Arnfred SM. Exploration of auditory P50 gating in schizophrenia by way of difference waves. Behav Brain Funct. 2006;2:1-6.
DOI: 10.1186/1744-9081-2-6

Boutros N, Zouridakis G, Rustin T, Peabody C, Warner D. The P50 component of the auditory evoked potential and subtypes of schizophrenia. Psychiatry Res. 1993;47(3):243-254.
DOI: 10.1016/0165-1781(93)90082-R

Adler LE, Olincy A, Cawthra EM, et al. Varied effects of atypical neuroleptics on P50 sensory auditory gaing in schizophrenia. Am J Psychiatry. 2004;161 (10):1822-1888.

Hong LE, Summerfelt A, Wonodi I, Adami H, Buchanan RW, Thaker GK. Independent domains of inhibitory gating in schizophrenia and the effect of stimulus interval. Am J Psychiatry. 2007;164(1):61-65.
DOI: 10.1176/ajp.2007.164.1.61

Pialarissi PR, Almeida FS, Camanducaia LCBM, Jorge Jr. JJ. Respostas auditivas evocadas de latência média em doenças neurológicas. Rev Bras Otorrinolaringol. 2007;73(4):540-548.
DOI: 10.1590/S0034-72992007000400014

Uc EY, Skinner RD, Rodnitzky RL, Garcia-Rill E. The midlatency auditory evoked potential P50 is abnormal in Huntington’s disease. J Neurol Sci. 2003;212(1-2):1-5.
DOI: 10.1016/S0022-510X(03)00082-0

Korzyukov O, Pflieger ME, Wagner M, et al. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage. 2007;35(2):814-826.
DOI: 10.1016/j.neuroimage.2006.12.011

Weisser R, Weisbrod M, Roehrig M, Rupp A, Schroeder J, Scherg M. Is frontal lobe involved in the generation of auditory evoked P50? Neuroreport. 2001;12(15): 3303-3307.
DOI: 10.1097/00001756-200110290-00031

McCormick DA, Bal T. Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol. 1994;4(4):550-556.
DOI: 10.1016/0959-4388(94)90056-6

Connelly WM, Laing M, Errington AC, Crunelli V. The Thalamus as a low pass filter: Filtering at the cellular level does not equate with filtering at the network level. Front Neural Circuits. 2016;9(JAN2016):1-10.
DOI: 10.3389/fncir.2015.00089

Moxon KA, Gerhardt GA, Adler LE. Dopaminergic modulation of the P50 auditory-evoked potential in a computer model of the CA3 region of the hippocampus: its relationship to sensory gating in schizophrenia. Biol Cybern. 2003; 88(4):265-275.
DOI: 10.1007/s00422-002-0372-8

Moura GS, Triñanes-Pego Y, Carrillo-de-la-Peña MT. Effects of stimuli intensity and frequency on auditory P50 and N100 sensory gating. In: Hussain A, Aleksander I, Smith LS, Barros AK, Chrisley R, Cutsuridis V, eds. Medicine. Vol 657. Advances in Experimental Medicine and Biology. New York, NY: Springer New York. 2010:5-17.
DOI: 10.1007/978-0-387-79100-5_1

Gabriel L, Vernier L, Ferreira M, Silveira A, Machado M. Parameters for applying the brainstem auditory evoked potential with speech stimulus: Systematic review. Int Arch Otorhinolaryngol. 2018;22 (4):460-468.
DOI: 10.1055/s-0037-1605598

Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991;79(2):81-93.
DOI: 10.1016/0013-4694(91)90044-5

Kizkin S, Karlidag R, Ozcan C, Ozisik HI. Reduced P50 auditory sensory gating response in professional musicians. Brain Cogn. 2006;61(3):249-254.
DOI: 10.1016/j.bandc.2006.01.006