Anticonvulsant Activity of Some Medicinal Plants: A Review

Felix Keneolisa Asogwa a*, Ugwu Obiora Celestine a and Ali Ibeabuchi Jude b

a Department of Pharmacology, Enugu State University of Science and Technology Agbani, Enugu State, Nigeria.
b Department of Pharmaceutical Chemistry, Enugu State University of Science and Technology Agbani, Enugu State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/INDJ/2022/v18i3355

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/94753

Received: 14/10/2022
Accepted: 21/12/2022
Published: 24/12/2022

ABSTRACT

Epilepsy is a central nervous system (neurological) disorder characterized by a bizarre feelings, sensations, and behaviors. Muscle spasms, convulsions, and loss of consciousness occasionally from epileptic seizures. Neuronal dependent on neurotransmitters in the central nervous system. In this review, we discussed epilepsy and its therapies, placing particular emphasis on some medicinal plants and their mechanism of action. The majority of herbal remedies that are both tested for anticonvulsant activity and utilized in ethno medicine to treat epilepsy were reported. The findings demonstrate that active components extracted from medicinal plants can prevent and treat neuronal disorder.

Keywords: Transmitter; excitotoxic neuronal plasticity; seizure; neurosyphilis.
1. INTRODUCTION

Epilepsy is a brain disorder that result from intense, improperly coordinated, confined, or broadly dispersed electrical discharges from neurons [1]. An epileptic seizure is a period of aberrant neuronal discharge that manifests clinically as alterations in sensory perception, motor coordination, mood, or autonomic function [2]. Numerous factors, including congenital, developmental, or inherited ones, can result in epileptic seizure disorders. Most seizures are spontaneous, without prior warning, short-lived (a few minutes or even seconds), and terminate on their own [3]. In various human communities, epileptic seizures are regarded as the most prevalent neurologic symptoms, and they continue to be the most prevalent neurological disorder affecting people of all ages. About fifty million people worldwide suffer from epilepsy, a chronic noninfectious brain disorder [Lozano et al., 2020] [4]. According to reports, epilepsy affects 1/125 of the population in Nigeria, which indicates that it is a significant burden [5]. Periodic seizures, which are defined by fleeting episodes of uncontrollable movement involving either a section of the body or the full body, are what make this medical disorder distinct. Sometimes they accompany loss of awareness and control of the bowels or the bladder (WHO, 2019). There are two primary categories of seizures: focused or partial seizures and generalized seizures. One area of the brain, referred to as the seizure's "focus," is the only one affected by focal seizures. Focal seizures can affect a large portion of one hemisphere or just a small portion of a lobe, but generalized seizures happen when seizure activity is widespread in both the left and right hemispheres of the brain, and the affected person falls unconscious, albeit briefly except in myoclonic seizures [6]. High-frequency action potential bursts and excessive synchronization of a neuronal population are two concurrent characteristics that mark the beginning of seizures [7]. Extracellular Ca++ causes an inflow of Na+, the opening of voltage-dependent Na+ channels, the formation of recurrent action potentials, and the bursting activity that arises from the neuronal membrane's comparatively protracted depolarization. Depending on the type of cell, the gamma-aminobutyric acid (GABA) receptors and Cl influx or K+ efflux mediate the hyperpolarizing potential [8]. GABA is a specific kind of inhibitory neurotransmitter in the brain that effectively stops the brain from delivering messages [2]. In some cases, GABA interneurons may paradoxically promote particular types of epileptic discharges. Effective anticonvulsants are those that boost synaptic GABA by inhibiting its breakdown or reuptake. These include benzodiazepines, which enhance GABA binding to the GABA receptor and increase the frequency of chloride channel openings [9, 2, 10]. Seizures can be brought on by several GABA production inhibitors, such as thiosemicarbazide, 4-deoxyxypiridoxine, isoniazid, and L-allylglycine [11]. The two main kinds of receptors, GABA_A and GABA_B, are involved in the interactions between GABA, the main inhibitory neurotransmitter. While GABA_B receptors are located presynaptically and can consequently influence synaptic release, GABA_A receptors are positioned postsynaptically. In the adult brain, GABA_A receptors are permeable to Cl-ions; Cl-influx activation hyperpolarizes the membrane and suppresses action potentials. Barbiturates and benzodiazepines are GABA_A receptor agonists, and as a result, they reduce seizure activity. Because of their presynaptic position, GABA_B receptors are associated to second messenger systems but not Cl- channels, and thus attenuate transmitter release [12]. A kind of amino acid called glutamate serves as the brain's main excitatory neurotransmitter. Under normal circumstances, glutamate produced from synapses is taken up by astrocytes and quickly transformed by glutamine synthetase into the non-excitotoxic amino acid glutamine [13]. Epileptic seizures are mediated by the metabotropic glutamate receptor and the ionotropic N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid / kainate, and others [2]. In chronic epilepsy models, excitatory glutamatergic pathways have a role in both long-term adaptive neuronal plasticity associated to epileptogenesis and acute, transitory, provoked seizures. The excitatory effects of glutamate increase sodium and calcium conductance via activating liganded ion channels (NMDA and non-NMDA receptors) [2]. Glutamate and aspartate are more easily reabsorbed after synaptic release, these effect is enhanced by the neuronal excitatory amino acid carrier 1 (EAAC1) and glial glutamate transporters. Reduced glutamate transporter activity may be consistent with increased excitatory activity [14].

2. ETOLOGY OF EPILEPSY

Despite the fact that the frequency of symptomatic epilepsy gradually increases with age, idiopathic epilepsy continues to be the most
prevalent in all age groups [15]. In Nigeria, between 55 and 60 percent of epilepsy cases are considered to be idiopathic [16]. In other regions of the world, approximately 30% of seizure patients have a diagnosable neurological or systemic illness, with the remaining patients having either idiopathic or cryptogenic epilepsy.

Genetics: Recent research from several studies revealed that 20% of epilepsy sufferers, especially in adolescents, have genetic variants of the condition [17]. There is little data on the genetic epidemiology of epilepsy among Nigerians, but there have been instances of tuberous sclerosis in Nigerians who have the condition [18].

3. INFECTIONS

Central nervous system infections, such as bacterial and viral meningitis, encephalitis, neurosyphilis, brain abscesses, and tuberculosis, continue to be the most common cause of symptomatic epilepsy. These infections were the cause of 10% to 20% of the epilepsy cases that were documented in Africa [16]. In the tropics, where there are little medical facilities, especially in rural and suburban areas, CNS infections are the primary cause of acute seizures. There is scant evidence that local parasites frequently cause epilepsy despite the high incidence of parasitic diseases in Nigeria. Nevertheless, there are several studies from other parts of the world, particularly other developing nations, implicating parasites in the development of epilepsy [19]. In some regions of the world, cysticercosis is the most frequent cause of epilepsy because computed tomography (CT), which was developed in the 1970s and early 1980s, made it possible to diagnose it. The most prevalent manifestation of neurocysticercosis is epilepsy, which frequently manifests as a single clinical symptom. As a result, prevalence estimates for idiopathic epilepsies in endemic locations cannot be trusted unless participants have undergone a CT scan. In contrast to her neighbors Cameroun and Togo, where cysticercosis was the leading cause of epilepsy cases, Nigeria has only seldom recorded occurrences of this infection [20,18]. It is through cardiac embolization of the brain that Trypanosoma Cruzi, the causative agent of Chaga's disease, and epilepsy are indirectly linked. Seizures are a possibility in the late stages of the African Trypanosoma infection, sleeping sickness, as well as perhaps as a follow-up in survivors [21]. One of the distinguishing features of cerebral malaria caused by Plasmodium falciparum is seizures. The most prevalent infection linked to febrile seizures in this region may be P. Vivax, the more prevalent cause of malaria in Latin America, however this is not confirmed [22].

4. TRAUMA

In Nigeria, two of the most frequent causes of epilepsy are trauma and hypoxia. Due to subpar obstetric care, these risks may act singly or in concert during pregnancy, or throughout life in instances of domestic violence, workplace violence, and auto accidents. Birth trauma can result in epilepsy after severe scalp molding and hypoxia, which then have a negative impact on the hippocampus and amygdala and induce incisura sclerosis. In Africa, it accounts for 1–2% of cases of symptomatic epilepsies [23]. The world's greatest rate of car accidents per million vehicle miles occurs in Nigeria and the East African nations, and as a result, post traumatic epilepsy is more prevalent. The occurrence of a seizure in the first week following a head injury suggests an increased likelihood of another seizure.

5. TUMORS

In Africa, 3–10% of symptomatic epilepsies are caused by cerebral tumors [24]. More occurrences of epilepsy owing to cerebral tumors are becoming visible with the introduction and installation of CT in various tertiary institutions in several African countries [18].

6. VASCULAR

Only 5% of patients with cerebral infarction have chronic seizures, which happen in 15% of individuals. Seizures can be caused by arteriovenous malformation, intracerebral hemorrhage, subdural hematoma, and inflammatory vasculitis (such as polyarteritis nodosa and lupus erythematosus) [25].

7. METABOLIC

Seizures may be caused by metabolic abnormalities, such as pyridoxine insufficiency, which is connected to elevated glumatic acid and decreased gamma aminobutyric acid (GABA) levels in the brain [26]. Alkalosis, water intoxication, hypoglycemia, hypocalcemia, hypomagnesemia, uraemia, and aminoaciduria are additional metabolic conditions that can cause epilepsy [27]. Rarely, an insulinoma that causes hypoglycemia may also cause epilepsy [28].
<table>
<thead>
<tr>
<th>S/N</th>
<th>Name of Plant</th>
<th>Family</th>
<th>Mechanism of Action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abruss precatorius. Ethanolic extract in PTZ, MES, Picrotoxin</td>
<td>Fabaceae</td>
<td>GABAergic mechanisms, deteriorated autoregulation of glutamate release</td>
<td>[51]</td>
</tr>
<tr>
<td>2</td>
<td>Acorus calamus Linn leaves, roots (rhizomes) Aqueous Extract</td>
<td>Acoraceae</td>
<td>Block NMDA receptors</td>
<td>[52]</td>
</tr>
<tr>
<td>3</td>
<td>Afzelia Africana leaves. Aqueous extract in PTZ</td>
<td>Caesalpinioideceae</td>
<td>Increase in GSH levels of brain, decreased MDA levels of brain, increased AChE and BChE activity in brain</td>
<td>[53]</td>
</tr>
<tr>
<td>4</td>
<td>Anacyclus pyrethrum roots Methanol, petroleum ether, hydro alcoholic extract</td>
<td>Asteraceae</td>
<td>Block glutamatergic excitation</td>
<td>[54,55]</td>
</tr>
<tr>
<td>5</td>
<td>Angelica archangelica Linn. roots</td>
<td>Apiaceae</td>
<td>Decreased tonic hindlimb extension phase and extensor/flexion ratio in MES model</td>
<td>[56]</td>
</tr>
<tr>
<td>6</td>
<td>Anisomeles malabarica</td>
<td>Lamiaceae</td>
<td>Increased AChE activity, elevated levels of Ach</td>
<td>[57,58]</td>
</tr>
<tr>
<td>7</td>
<td>Bunium persicum methanolic extract</td>
<td>Apiaceae</td>
<td>GABAergic mechanisms</td>
<td>[59,60]</td>
</tr>
<tr>
<td>8</td>
<td>Centella asiatica. Leaves, methanol, hexane, chloroform, ethyl acetate, butanol</td>
<td>Apiaceae</td>
<td>Increased brain norepinephrine level, reduced total nitrite levels of brain, reduced AChE activity</td>
<td>[61]</td>
</tr>
<tr>
<td>9</td>
<td>Curcumin</td>
<td>Zingiberaceae</td>
<td>Facilitation of GABA<sub>A</sub> Rs by</td>
<td>[62,63]</td>
</tr>
<tr>
<td>10</td>
<td>Curcumol</td>
<td>Zingiberaceae</td>
<td></td>
<td>[64, 65]</td>
</tr>
<tr>
<td>S/N</td>
<td>Name of Plant</td>
<td>Family</td>
<td>Mechanism of Action</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>(from Rhizoma Curcumae)</td>
<td></td>
<td></td>
<td>curcumol in hippocampal neurons, facilitation of recombinant GABA<sub>A</sub> Rs, enhancement of phasic GABAergic inhibition by curcumol in hippocampal slices, enhancement of tonic GABAergic inhibition by curcumol in hippocampal slices</td>
<td>[66, 67]</td>
</tr>
<tr>
<td>11.</td>
<td>Cymbopogon winterianus Jowitt</td>
<td>Poaceae</td>
<td>GABAergic mechanisms, deteriorated autoregulation of glutamate release</td>
<td>[66, 67]</td>
</tr>
<tr>
<td>12.</td>
<td>Cyperus rotundus Linn.</td>
<td>Cyperaceae</td>
<td>Inhibit voltage-dependant Na<sup>+</sup> channels, block glutamatergic excitation mediated by the NMDA receptor</td>
<td>[68, 69]</td>
</tr>
<tr>
<td>13.</td>
<td>Feretia apodanthera Del</td>
<td>Rubiaceae</td>
<td>Decreased brain MDA levels, increased brain GSH levels, increase of AChE and BChE activity in brain</td>
<td>[70, 71]</td>
</tr>
<tr>
<td>14.</td>
<td>Ficus platyphylla</td>
<td>Moracea</td>
<td>Affinity for undifferentiated glutamate receptors, affinity for the 3H-GABA binding assay, decrease the K<sup>+</sup>-stimulated glutamate release from rat hippocampal</td>
<td>[72]</td>
</tr>
<tr>
<td>S/N</td>
<td>Name of Plant</td>
<td>Family</td>
<td>Mechanism of Action</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>15.</td>
<td>Harungana madagascariensis. Methanol extract in isoniazide induced seizure</td>
<td>Hypericaceae</td>
<td>slices</td>
<td>GABAergic mechanisms [73]</td>
</tr>
<tr>
<td>16.</td>
<td>Lavandula angustifolia</td>
<td>Lamiaceae</td>
<td>Modulate glutamate activation expression, reduction of the ACh-evoked release, direct interaction with the NMDA receptor complex</td>
<td>GABAergic mechanisms [74]</td>
</tr>
<tr>
<td>17.</td>
<td>Mentha spicata</td>
<td>Lamiaceae</td>
<td>Attenuate the increased NO levels resulting from pilocarpine, attenuate the decrease in hippocampal Na+, K+ ATPase activity, increase the AchE enzyme</td>
<td>GABAergic mechanisms [75, 76]</td>
</tr>
<tr>
<td>18.</td>
<td>Nigella sativa</td>
<td>Ranunculaceae</td>
<td>Modulate glutamate activation expression, reduction of the ACh-evoked release, direct interaction with the NMDA receptor complex</td>
<td>GABAergic mechanisms [63, 77]</td>
</tr>
<tr>
<td>19.</td>
<td>Ocimum basilicum</td>
<td>Lamiaceae</td>
<td>Attenuate the increased NO levels resulting from pilocarpine, attenuate the decrease in hippocampal Na+, K+ ATPase activity, increase the AchE enzyme</td>
<td>GABAergic mechanisms [76]</td>
</tr>
<tr>
<td>20.</td>
<td>Origanum dictamnus</td>
<td>Rutaceae</td>
<td>GABAergic mechanisms</td>
<td>[78]</td>
</tr>
<tr>
<td>21.</td>
<td>Origanum vulgare</td>
<td>Rutaceae</td>
<td>GABAergic mechanisms</td>
<td>[79, 80]</td>
</tr>
<tr>
<td>22.</td>
<td>Panax ginseng root butanol extract</td>
<td>Araliaceae</td>
<td>T2 relaxation time in rat hippocampus, entorhinal cortex, piriform cortex</td>
<td>[81, 82]</td>
</tr>
<tr>
<td>S/N</td>
<td>Name of Plant</td>
<td>Family</td>
<td>Mechanism of Action</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>23</td>
<td>Pimpinella anisum</td>
<td>Apiaceae</td>
<td>Inhibited production of dark neurons, inhibited induction of long-term potentiation in hippocampal slices</td>
<td>[83, 84]</td>
</tr>
<tr>
<td>24</td>
<td>Piper guineen. Seeds</td>
<td>Piperaceae</td>
<td>Activity against NMDA</td>
<td>[85]</td>
</tr>
<tr>
<td>25</td>
<td>Psidium guajava (guava) leaves ethanolic extract</td>
<td>Myrtaceae</td>
<td>Selectively inhibit NMDA receptor</td>
<td>[86]</td>
</tr>
<tr>
<td>26</td>
<td>Rosmarinus officinalis</td>
<td>Lamiaceae</td>
<td>Elevate GABA levels in the midbrain Region</td>
<td>[80, 87]</td>
</tr>
<tr>
<td>27</td>
<td>Soy extract</td>
<td>legumiaceae</td>
<td>Phytoestrogens of soy affect seizure Severity</td>
<td>[88]</td>
</tr>
<tr>
<td>28</td>
<td>Trachyspermum ammi (L.) methanol extract</td>
<td>Apiaceae</td>
<td>Excite GABA responses mainly by stimulating human GABAA receptors and increasing the chloride ion channel opening</td>
<td>[89, 90]</td>
</tr>
<tr>
<td>29</td>
<td>Trichosanthes dioica Roxb fruits aqueous extract</td>
<td>Cucurbitaceae</td>
<td>Activity against generalized tonic-clonic and cortical focal seizures</td>
<td>[91, 2]</td>
</tr>
<tr>
<td>30</td>
<td>Turmeric methanolic extract</td>
<td>Zingiberaceae</td>
<td>Higher lipophilicity and easily cross the blood–brain barrier, suppress oxidative DNA damage and lipid peroxidation</td>
<td>[92, 93]</td>
</tr>
<tr>
<td>31</td>
<td>Valeriana officinalis root aqueous Extract</td>
<td>Caprifoliaceae</td>
<td>Existence of adenosine ligand(s) in the valerian aqueous extract and activation of</td>
<td>[94, 95]</td>
</tr>
<tr>
<td>S/N</td>
<td>Name of Plant</td>
<td>Family</td>
<td>Mechanism of Action</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>32.</td>
<td>Withania somnifera methanolic extract</td>
<td>Solanaceae</td>
<td>A1 adenosine system, binding to GABA Receptors Ameliorated spatial memory deficit in Ymaze</td>
<td>[96]</td>
</tr>
<tr>
<td>33.</td>
<td>Zhumeria majdae essential oil and methanolic extract</td>
<td>Lamiaceae</td>
<td>Inhibit voltage-dependent Na+ channels, block glutamatergic excitation mediated by the NMDA receptor</td>
<td>[96, 78]</td>
</tr>
<tr>
<td>34.</td>
<td>Zingiber officinale (ginger) rhizomes hydroethanolic extract</td>
<td>Lamiaceae</td>
<td>Antioxidant activity, inhibit NO production, reduce inducible nitric oxide synthase</td>
<td>[97, 98]</td>
</tr>
<tr>
<td>35.</td>
<td>Zizyphus jujuba hydroalcoholic Extract</td>
<td>Rhamnaceae</td>
<td>Increase in brain GSH, decreased brain MDA levels, increased brain AChE and BChE activity</td>
<td>[99, 100]</td>
</tr>
</tbody>
</table>
8. PATHOPHYSIOLOGY OF EPILEPSY

An overly synchronized and prolonged discharge of a set of neurons is the cause of epileptic seizures. A continuous rise in neuronal excitability is the defining characteristic of all epileptic disorders. There are many different causes of abnormal cellular discharges, including trauma, oxygen deprivation, malignancies, infections, and metabolic disturbances. However, in roughly 50% of epilepsy patients, there are no definite causes established. Some types of epilepsy, such as those brought on by neuronal migratory abnormalities and monogenic epilepsies, have underlying causes and pathophysiological mechanisms that are (partially) characterized [29,30]. There is currently little information available about a number of other kinds of epilepsy. The main neuronal migratory problems that can have hereditary or intrauterine origins are those that lead to epilepsy [31]. Different types of agyria and pachygryria are caused by abnormal neuronal migration patterns, whereas neuronal heterotopia in the subcortical white matter is caused by milder levels of neuronal migration failure [32]. Studies have shown that the microgyric cortex has higher levels of postsynaptic glutamate receptors and lower levels of gamma-aminobutyric acid (GABA_A) receptors, which may encourage the development of epileptogenesis [33]. Epilepsy and abnormal neural migration are two features that are frequently observed in people with tuberous sclerosis, a developmental condition inherited in an autosomal dominant manner. An X-linked dominant disease of cerebral cortical development is called periventricular heterotopia. It is known that periventricular heterotopia is caused by mutations in the filamin 1 gene, which block the movement of cerebral cortical neurons [34,35]. Females with the condition exhibit seizures, whilst males with the condition experience embryonic death. However, a male patient who had bilateral periventricular and subcortical heterotopia was recently reported, raising the possibility of a new gene involved in brain development [36,37]. Another abnormality of neuronal migration is the double cortex syndrome and X-linked lissencephaly. In contrast to more severe lissencephaly, which is prevalent in affected males, double cortex or subcortical band heterotopia frequently affects females [38,39]. Recently, a causative mutation in the doublecortin gene was found. It has been hypothesized that doublecortin serves as an essential intracellular signaling molecule for the migration of growing neurons [40].

9. ANTICONVULSANT DRUGS

Anticonvulsants in particular are used in pharmacological therapy to manage the majority of epileptic seizures. Anticonvulsant medications are used as the mainstay of treatment for seizures, despite the fact that there are several anticonvulsant therapeutic options for distinct seizure types and epileptic disorders [41]. The conventional anticonvulsants carbamazepine, valproic acid/valproate semisodium, phenytoin, and phenobarbital, as well as more recently gabapentin, oxcarbazepine, lamotrigine, or topiramate, can be used to treat newly diagnosed epilepsy patients who require treatment [2]. The intensity and frequency of the seizures, as well as the patient's age, general health, and medical history, all affect the recommended treatment. To select the most effective treatment, an accurate identification of the epilepsy type is necessary [42,43]. Traditional antiepileptic medications may inhibit sodium channels or enhance GABA activity. Various antiepileptic medications have a variety of possibly ambiguous methods of action [44]. Their targets include GABA_A receptors, GABA transporter 1, GABA transaminase, and voltage-gated calcium channels in addition to voltage-gated sodium channels and parts of the GABA system [45]. Antiepileptic medications reduce the release of excitatory glutamate, which rises in epilepsy, as well as GABA, by blocking sodium or calcium channels [46]. Given that GABA can either directly or indirectly act proconvulsively, this may be a side effect of several antiepileptic medications or perhaps their real mode of action [47]. Due to the prolonged therapy given to patients with epileptic conditions, the majority of these anticonvulsants currently in use have unpredictable pharmacological actions and undesirable side effects, such as chronic toxicity and birth defects, and yet patients continue to experience health problems [48,49]. To treat epilepsy, which is a long-term procedure, it is vital to find novel medications with minimal or no adverse effects and predictable pharmacological action. These medications are also usually tapered off gradually over a period of around six months [50]. Biochemical and biological diversity are abundant in nature. Before any other contemporary therapeutic strategy was used to treat epilepsy, numerous phytochemicals from plants have been known about and used traditionally. In effect, the present interest in
traditional medicine has sped up the development and research of numerous treatments used by different ethnic groups worldwide. Table 1 summarizes the information on the types of extracts, as well as the mechanisms of action, techniques, and references pertaining to the plants that have been studied or reported to have anticonvulsant effects in animal models.

10. DISCUSSION

Epilepsy is the most common neurological disorder, after stroke affecting at least 50 million people globally [101,102]. Medicinal plants have a wider range of pharmacological effects on neurological disorders when compared to conventional synthetic antiepileptic drugs. According to ethnobotanical reports, several herbal medications have positive effects on those who are seizure prone [2,103]. One popular screening methodology for evaluating anticonvulsive drugs is the PTZ kindling model. It primarily affects the GABA_A receptor's t-butyl-bicyclo-phosphorothionate/picrotoxin site. The preferred GABA_A receptor chloride ionophore complex blocker is PTZ [2]. It affects numerous neurotransmitter systems, including the adenosinergic, GABAergic, and glutamatergic systems, causes convulsant effects following repeated or single intake. Significant changes in the levels of GSH, cysteine, glutathione disulfide, and protein thiols as well as protein disulfides and protein carbonyl were seen in the mouse cerebral cortex following PTZ-induced convulsions [104]. The efficacy of an anticonvulsant medicine against generalized tonic-clonic seizures is thought to be predicted by the MES seizure test, which induces tonic hind limb seizures through bilateral corneal or transauricular electrical stimulation. Some side effects from epilepsy medications are possible. The likelihood of adverse effects depends on the dosage, length of therapy, and type of medication used [48]. Higher medicine doses make side effects more likely to occur, but as the body gets used to the treatment, they usually lessen with time. Over 50% of all medications used in clinical settings globally are natural compounds and their derivatives [105]. When compared to conventional synthetic antiepileptic medicines, medicinal plants have a wider range of pharmacological effects and structural diversity.

11. CONCLUSION

From ethnobotanical reports, plant-based extracts are crucial to identifying chemical compounds for novel anticonvulsant therapy with minimal side effects and accessibility.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

22. Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and

Available: https://doi.org/10.1186/s12936-017-1925-6

Available:https://doi.org/https://doi.org/10.1016/S1474-4422(14)70114-0

Available:https://doi.org/10.1148/rg.344135028

Available:https://doi.org/10.1002/jimrd.12060

Available: https://doi.org/10.1007/978-3-030-21674-2_24

Available:https://doi.org/https://doi.org/10.1016/S1474-4422(11)70047-3

84. PF Guine R, J Goncalves F. Chemistry and health effects of bioactive compounds in selected culinary aromatic herbs.

